首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8225篇
  免费   430篇
  国内免费   6篇
  2022年   37篇
  2021年   73篇
  2020年   43篇
  2019年   46篇
  2018年   90篇
  2017年   78篇
  2016年   142篇
  2015年   195篇
  2014年   236篇
  2013年   817篇
  2012年   417篇
  2011年   497篇
  2010年   290篇
  2009年   273篇
  2008年   477篇
  2007年   490篇
  2006年   504篇
  2005年   513篇
  2004年   480篇
  2003年   470篇
  2002年   533篇
  2001年   95篇
  2000年   77篇
  1999年   96篇
  1998年   141篇
  1997年   105篇
  1996年   100篇
  1995年   94篇
  1994年   86篇
  1993年   122篇
  1992年   96篇
  1991年   59篇
  1990年   51篇
  1989年   62篇
  1988年   50篇
  1987年   51篇
  1986年   47篇
  1985年   49篇
  1984年   66篇
  1983年   38篇
  1982年   74篇
  1981年   55篇
  1980年   58篇
  1979年   29篇
  1978年   39篇
  1977年   26篇
  1976年   34篇
  1974年   20篇
  1973年   24篇
  1972年   20篇
排序方式: 共有8661条查询结果,搜索用时 62 毫秒
991.
992.
Following the report that agmatine has an anti-proliferative effect on cell growth through induction of antizyme [Satriano et al. (1998) J. Biol. Chem. 273, 15313-15316], we examined the effects of 16 different diamines on cell growth. Many diamines had little or no effect on cell growth, but agmatine and 1,6-hexanediamine had anti-proliferative effects, with agmatine having the strongest effect. Inhibition of cell growth occurred after 2 days, and inhibitory effects paralleled the degree of antizyme induction. Decreased spermine levels indicated that induction of spermidine/spermine N(1)-acetyltransferase was also involved in the inhibition of cell growth by agmatine and 1,6-hexanediamine. The frameshift efficiency (ratio of antizyme synthesis with or without frameshift) measured in a rabbit reticulocyte cell-free system was also increased by 1,3-propanediamine and cis-1,4-cyclohexanediamine in addition to agmatine and 1,6-hexanediamine. However, the intracellular levels of 1,3-propanediamine and cis-1,4-cyclohexanediamine were low when these compounds were added to the cell-culture medium. Other diamines had no effect on cell growth or frameshift efficiency. The results suggest that the presence of two amino-groups separated by an appropriate distance is important for the enhancement of frameshifting by diamines.  相似文献   
993.
The formation of the hyaluronan-rich cumulus extracellular matrix is crucial for female fertility and accompanied by a transesterification reaction in which the heavy chains (HCs) of inter-alpha-trypsin inhibitor (IalphaI)-related proteins are covalently transferred to hyaluronan. Tumor necrosis factor-induced protein-6 (TNFIP6) is essential for this transfer reaction. Female mice deficient in TNFIP6 are infertile due to the lack of a correctly formed cumulus matrix. In this report, we characterize the specificity of TNFIP6-mediated HC transfer from IalphaI to hyaluronan. Hyaluronan oligosaccharides with eight or more monosaccharide units are potent acceptors in the HC transfer, with longer oligosaccharides being somewhat more efficient. Epimerization of the N-acetyl-glucosamine residues to N-acetyl-galactosamines (i.e. in chondroitin) still allows the HC transfer although at a significantly lower efficiency. Sulfation of the N-acetyl-galactosamines in dermatan-4-sulfate or chondroitin-6-sulfate prevents the HC transfer. Hyaluronan oligosaccharides disperse cumulus cells from expanding cumulus cell-oocyte complexes with the same size specificity as their HC acceptor specificity. This process is accompanied by the loss of hyaluronan-linked HCs from the cumulus matrix and the appearance of oligosaccharide-linked HCs in the culture medium. Chondroitin interferes with the expansion of cumulus cell-oocyte complexes only when added with exogenous TNFIP6 before endogenous hyaluronan synthesis starts, supporting that chondroitin is a weaker HC acceptor than hyaluronan. Our data indicate that TNFIP6-mediated HC transfer to hyaluronan is a prerequisite for the correct cumulus matrix assembly and hyaluronan oligosaccharides and chondroitin interfere with this assembly by capturing the HCs of the IalphaI-related proteins.  相似文献   
994.
995.
DNA damage can cause cell death unless it is either repaired or tolerated. The precise contributions of repair and tolerance mechanisms to cell survival have not been previously evaluated. Here we have analyzed the cell killing effect of the two major UV light-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs), in nucleotide excision repair-deficient human cells by expressing photolyase(s) for light-dependent photorepair of either or both lesions. Immediate repair of the less abundant 6-4PPs enhances the survival rate to a similar extent as the immediate repair of CPDs, indicating that a single 6-4PP lesion is severalfold more toxic than a CPD in the cells. Because UV light-induced DNA damage is not repaired at all in nucleotide excision repair-deficient cells, proliferation of these cells after UV light irradiation must be achieved by tolerance of the damage at replication. We found that RNA interference designed to suppress polymerase zeta activity made the cells more sensitive to UV light. This increase in sensitivity was prevented by photorepair of 6-4PPs but not by photorepair of CPDs, indicating that polymerase zeta is involved in the tolerance of 6-4PPs in human cells.  相似文献   
996.
"Catch" is the state where some invertebrate muscles sustain high tension for long periods at low ATP hydrolysis rates. Physiological studies using muscle fibers have not yet fully provided the details of the initiation process of the catch state. The process was extensively studied by using an in vitro reconstitution assay with several phosphatase inhibitors. Actin filaments bound to thick filaments pretreated with the soluble protein fraction of muscle homogenate and Ca2+ (catch treatment) in the presence of MgATP at a low free Ca2+ concentration (the catch state). Catch treatment with > 50 microm okadaic acid, > 1 microm microcystin LR, 1 microm cyclosporin A, 1 microm FK506, or 0.2 mm calcineurin autoinhibitory peptide fragment produced almost no binding of the actin filaments, indicating protein phosphatase 2B (PP2B) was involved. Use of bovine calcineurin (PP2B) and its activator calmodulin instead of the soluble protein fraction initiated the catch state, indicating that only PP2B and calmodulin in the soluble protein fraction are essential for the initiation process. The initiation was reproduced with purified actin, myosin, twitchin, PP2B, and calmodulin. 32P autoradiography showed that only twitchin was dephosphorylated during the catch treatment with either the soluble protein fraction or bovine calcineurin and calmodulin. These results indicate that PP2B directly dephosphorylates twitchin and initiates the catch state and that no other component is required for the initiation process of the catch state.  相似文献   
997.
We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression.  相似文献   
998.
999.
1000.
Placental leucine aminopeptidase (P-LAP), a type-II transmembrane protease responsible for oxytocin degradation during pregnancy, is converted to a soluble form through proteolytic cleavage. The goal of this study was to determine the nature of the P-LAP secretase activity. The hydroxamic acid-based metalloprotease inhibitors GM6001 and ONO-4817 as well as the TNF-alpha protease inhibitor-2 (TAPI-2) reduced P-LAP release, while tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, which are matrix metalloproteinase inhibitors, had no effect on P-LAP release in Chinese hamster ovary (CHO) cells stably overexpressing P-LAP, thus indicating possible involvement of ADAM (a disintegrin and metalloproteinase) members in P-LAP shedding. Furthermore, overexpression of ADAM9 and ADAM12 increased P-LAP release in P-LAP-CHO transfectants. Immunohistochemical analysis in human placenta demonstrated strong expression of ADAM12 in syncytiotrophoblasts, while little expression of ADAM9 was detected throughout the placenta. Our results suggest ADAM members, at least including ADAM12, are involved in P-LAP shedding in human placenta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号