首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   14篇
  166篇
  2024年   2篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   4篇
  2014年   9篇
  2013年   14篇
  2012年   15篇
  2011年   7篇
  2010年   1篇
  2009年   6篇
  2008年   17篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
41.
The emergence of multiple-resistant isolates poses a serious problem in the hospital environment making it important to evaluate the responsible factors. This work ascertains the mechanisms responsible for the development of resistance in enterobacterial clinical isolates. The major resistance mechanisms have been explored. The presence of target mutations, drug hydrolyzing enzymes, active efflux pump, and drug-resistance genes were elucidated experimentally employing standard methods. One of the clinical isolates was resistant to five classes of structurally unrelated antibiotics and showed involvement of multiple resistance mechanisms. Here, we report the simultaneous presence of multiple drug-resistance mechanisms in an Escherichia coli clinical isolate.  相似文献   
42.
43.
N-Acylbenzotriazoles enable the synthesis (6992 % yield) of blue to green fluorescent coumarin-labeled depsidipeptides 8a–f (quantum yields 0.0040.97) and depsitripeptides 12a–d (quantum yields 0.020.96). Detailed photophysical studies of fluorescent coumarin-labeled depsipeptides 8a–f and 12a–d are reported for both polar protic and polar aprotic solvents. 7-Methoxy and 7-diethylaminocoumarin-3-ylcarbonyl depsipeptides 8c,f and 12d are highly solvent sensitive. These highly fluorescent compounds could be useful for peptide assays. Further photophysical studies of 7-diethylaminocoumarin-labeled depsipeptides 8c,12d within the micellar microenvironment of SDS reflect their ability to bind with the biological membrane, suggesting potential applications in the fields of bio- and medicinal chemistry.  相似文献   
44.
VY Muley  A Ranjan 《PloS one》2012,7(7):e42057

Background

Recent progress in computational methods for predicting physical and functional protein-protein interactions has provided new insights into the complexity of biological processes. Most of these methods assume that functionally interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive performance analyses of these methods have been frequently reported in literature. However, very few studies provide insight into the effect of reference genome selection on detection of meaningful protein interactions.

Methods

We analyzed the performance of four methods and their variants to understand the effect of reference genome selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction methods.

Conclusions

Higher performance for predicting protein-protein interactions was achievable even with 100–150 bacterial genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the large number of available genomes. Moreover, such a sampling allows for selecting 50–100 genomes for comparable accuracy of predictions when computational resources are limited.  相似文献   
45.
In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, ‘free’ (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3–H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes.  相似文献   
46.
47.
48.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on tetrahydrofuroyl-L-phenylalanine derivatives as VLA-4 antagonists. The best CoMFA and CoMSIA models that were generated using atom based alignment from a training set of twenty five tetrahydrofuroyl-L-phenylalanine derivatives, are six-component models with good statistics; CoMFA: r(2)(cv)=0.366, r(2)=0.983, s=0.099, F=172.661 and PRESS=4.435; CoMSIA: r(2)(cv)=0.528, r(2)=0.995, s=0.054, F=577.87 and PRESS=3.563. Both of these 3-D-QSAR models were validated using a test set of eleven compounds, whose predicted pIC(50) values fall within one log unit of the actual pIC(50). The contour diagrams obtained for the various CoMFA and CoMSIA field contributions can be mapped back onto structural features to explain the activity trends of the molecules analysed. Based on the spatial arrangement of the various field contributions, novel molecules with improved activity can be designed.  相似文献   
49.
In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.  相似文献   
50.
Lim J  Hao T  Shaw C  Patel AJ  Szabó G  Rual JF  Fisk CJ  Li N  Smolyar A  Hill DE  Barabási AL  Vidal M  Zoghbi HY 《Cell》2006,125(4):801-814
Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号