首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   14篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   8篇
  2016年   10篇
  2015年   4篇
  2014年   9篇
  2013年   14篇
  2012年   15篇
  2011年   7篇
  2010年   1篇
  2009年   6篇
  2008年   17篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
151.
It is of interest to report data on periodontal Health among elderly people in Bushland, Jharkhand, Magadha and Patna, India. The sample comprised of a 130 elderly people. The studies device comprised of a semi-structured survey with thirteen questions. Data shows that old people in Jharkhand suffered from advanced periodontal ailment (47.6%) with easy gingivitis (33.8%). Data also shows that grownups (88.2% grownup males, 64.5% girls in Jharkhand and 34.5% grownup males and 88.9% girls in Bihar) used toothpaste and toothbrush as their primary style for tooth cleansing. These data help in providing improved dental service to rural population in India.  相似文献   
152.
The development of nicotinic acetylcholine receptor (nAChR) agonists, particularly those that discriminate between neuronal nAChR subtypes, holds promise as potential therapeutic agents for many neurological diseases and disorders. To this end, we photoaffinity labeled human α4β2 and rat α4β4 nAChRs affinity-purified from stably transfected HEK-293 cells, with the agonists [125I]epibatidine and 5[125I]A-85380. Our results show that both agonists photoincorporated into the β4 subunit with little or no labeling of the β2 and α4 subunits respectively. [125I]epibatidine labeling in the β4 subunit was mapped to two overlapping proteolytic fragments that begin at β4V102 and contain Loop E (β4I109-P120) of the agonist binding site. We were unable to identify labeled amino acid(s) in Loop E by protein sequencing, but we were able to demonstrate that β4Q117 in Loop E is the principal site of [125I]epibatidine labeling. This was accomplished by substituting residues in the β2 subunit with the β4 homologs and finding [125I]epibatidine labeling in β4 and β2F119Q subunits with little, if any, labeling in α4, β2, or β2S113R subunits. Finally, functional studies established that the β2F119/β4Q117 position is an important determinant of the receptor subtype-selectivity of the agonist 5I-A-85380, affecting both binding affinity and channel activation.  相似文献   
153.
Type 2 diabetes mellitus (T2DM) is characterized by progressive β‐cell dysfunctioning and insulin resistance. This article reviews recent literature with special focus on inflammatory mechanisms that provoke the pathogenesis of T2DM. We have focused on the recent advances in progression of T2DM including various inflammatory mechanisms that might induce inflammation, insulin resistance, decrease insulin secretion from pancreatic islets and dysfunctioning of β‐cells. Here we have also summarized the role of various pro‐inflammatory mediators involved in inflammatory mechanisms, which may further alter the normal structure of β‐cells by inducing pancreatic islet's apoptosis. In conclusion, it is suggested that the role of inflammation in pathogenesis of T2DM is crucial and cannot be neglected. Moreover, the insight of inflammatory responses in T2DM may provide a new gateway for the better treatment of diabetes mellitus. J. Cell. Biochem. 114: 525–531, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
154.
Oxide nanoelectronics is a rapidly growing field which seeks to develop novel materials with multifunctional behavior at nanoscale dimensions. Oxide interfaces exhibit a wide range of properties that can be controlled include conduction, piezoelectric behavior, ferromagnetism, superconductivity and nonlinear optical properties. Recently, methods for controlling these properties at extreme nanoscale dimensions have been discovered and developed. Here are described explicit step-by-step procedures for creating LaAlO3/SrTiO3 nanostructures using a reversible conductive atomic force microscopy technique. The processing steps for creating electrical contacts to the LaAlO3/SrTiO3 interface are first described. Conductive nanostructures are created by applying voltages to a conductive atomic force microscope tip and locally switching the LaAlO3/SrTiO3 interface to a conductive state. A versatile nanolithography toolkit has been developed expressly for the purpose of controlling the atomic force microscope (AFM) tip path and voltage. Then, these nanostructures are placed in a cryostat and transport measurements are performed. The procedures described here should be useful to others wishing to conduct research in oxide nanoelectronics.  相似文献   
155.
The widespread emergence of antimalarial drug resistance has created a major threat to public health. Malaria is a life-threatening infectious disease caused by Plasmodium spp., which includes Apicoplast DNA polymerase and Plasmodium falciparum cysteine protease falcipain-2. These components play a critical role in their life cycle and metabolic pathway, and are involved in the breakdown of erythrocyte hemoglobin in the host, making them promising targets for anti-malarial drug design. Our current study has been designed to explore the potential inhibitors from haplopine derivatives against these two targets using an in silico approach. A total of nine haplopine derivatives were used to perform molecular docking, and the results revealed that Ligands 03 and 05 showed strong binding affinity compared to the control compound atovaquone. Furthermore, these ligand-protein complexes underwent molecular dynamics simulations, and the results demonstrated that the complexes maintained strong stability in terms of RMSD (root mean square deviation), RMSF (root mean square fluctuation), and Rg (radius of gyration) over a 100 ns simulation period. Additionally, PCA (principal component analysis) analysis and the dynamic cross-correlation matrix showed positive outcomes for the protein-ligand complexes. Moreover, the compounds exhibited no violations of the Lipinski rule, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) predictions yielded positive results without indicating any toxicity. Finally, density functional theory (DFT) and molecular electrostatic potential calculations were conducted, revealing that the mentioned derivatives exhibited better stability and outstanding performance. Overall, this computational approach suggests that these haplopine derivatives could serve as a potential source for developing new, effective antimalarial drugs to combat malaria. However, further in vitro or in vivo studies might be conducted to determine their actual effectiveness.  相似文献   
156.
Journal of Plant Research - Bio-energy crops need to be grown on marginal salt and drought lands in India as per policy. Understanding environmental stress response in bio-energy crops might help...  相似文献   
157.
Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929–2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/−) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/− fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/− + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.  相似文献   
158.
Protein aggregates result from altered structural conformations and they can perturb cellular homeostasis. Prevention mechanisms, which function against protein aggregation by modulatory processes, are diverse and redundant. In this study, we have characterized Huntingtin interacting protein K (HYPK) as a global aggregation-regulatory protein. We report the mechanistic details of how HYPK's aggregation-prone regions allow it to sense and prevent other toxic protein's aggregation by forming unique annular-shaped sequestration complexes. Screenings for interacting partners of different aggregation-prone proteins identify HYPK as a global interacting partner/regulator of Huntingtin97Qexon1, α-Synuclein-A53T and Superoxide dismutase1-G93A. C-terminal hydrophobic region in HYPK makes direct contacts with aggregates to initiate the formation of sequestration complexes. HYPK acts as aggregate sensor by existing in a seeded amyloid-like state which also favors its own concentration-dependent self-oligomerization. Oligomerization of HYPK leads to annular and non-fibrillar/amorphous aggregates. Two hydrophobic segments in the C-terminus of HYPK are responsible for its own aggregations. Self-association of HYPK follows seed nucleation, in which oligomeric HYPK seeds nucleate to annular structures. Annular oligomers of HYPK fuse with each other to form amorphous aggregates. HYPK shows differential interactions with aggregation-prone and non-aggregating proteins, as it preferentially binds to aggregation-prone proteins with higher affinity than native/non-aggregating proteins. This favors the formation of HYPK's sequestration complexes both in cytosol and in ribosome. Besides having aggregation-preventive property, HYPK also reduces the cellular level of toxic proteins. In vivo, HYPK sequestration complexes prevent the formation of toxic protein aggregates to physiologically show positive impact on cell survival and restoration of normal cell physiology.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号