首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   31篇
  604篇
  2024年   3篇
  2023年   7篇
  2022年   7篇
  2021年   13篇
  2020年   9篇
  2019年   15篇
  2018年   17篇
  2017年   16篇
  2016年   17篇
  2015年   19篇
  2014年   29篇
  2013年   45篇
  2012年   42篇
  2011年   32篇
  2010年   18篇
  2009年   27篇
  2008年   41篇
  2007年   25篇
  2006年   22篇
  2005年   21篇
  2004年   23篇
  2003年   16篇
  2002年   11篇
  2001年   16篇
  2000年   8篇
  1999年   11篇
  1997年   6篇
  1994年   2篇
  1993年   3篇
  1990年   4篇
  1989年   5篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1962年   2篇
排序方式: 共有604条查询结果,搜索用时 15 毫秒
31.
The growth of horticulture industries worldwide has generated huge quantities of fruit wastes (25%–40% of the total fruits processed). These residues are generally a good source of carbohydrates, especially cell wall polysaccharides and other functionally important bioactive molecules such as proteins, vitamins, minerals and natural antioxidants. “Apple pomace” is a left-over solid biomass with a high moisture content, obtained as a by-product during the processing of apple fruits for juice, cider or wine preparation. Owing to the high carbohydrate content, apple pomace is used as a substrate in a number of microbial processes for the production of organic acids, enzymes, single cell protein, ethanol, low alcoholic drinks and pigments. Recent research trends reveal that there is an increase in the utilization of apple pomace as a food processing residue for the extraction of value added products such as dietary fibre, protein, natural antioxidants, biopolymers, pigments and compounds with unique properties. However, the central dogma is still the stability, safety and economic feasibility of the process(s)/product(s) developed. This review is mainly focused on assessing recent research developments in extraction, isolation and characterization of bioactive molecules from apple pomace, along with their commercial utilization, in food fortification.  相似文献   
32.

Background

H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD), an important house keeping protein of H. pylori.

Methodology/Principal Findings

Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA) in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD.

Conclusions/Significance

ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1) and therefore, may not be a notable proinflammatory agent.  相似文献   
33.
One hundred and forty two cotton germplasm lines were screened for cotton leaf curl virus symptoms in field evaluations during 2003, 2004, and 2005. Fifty cross combinations involving 30 of these lines classified resistant or susceptible were used for inheritance study of the disease. All the F(1) plants of crosses involving resistant x resistant, resistant x susceptible, and susceptible x resistant parents were resistant, indicating dominant expression of the disease resistance and there were no maternal or cytoplasmic effects detected from reciprocal hybridization. In 22 crosses, 4 types of segregation patterns were obtained in the F(2) generations. A good fit for 15 (resistant):1 (susceptible), 13 (resistant):3 (susceptible), 9 (resistant):7 (susceptible) ratios indicated digenic control of the trait with duplicate dominant, dominant inhibitory, and duplicate recessive epistasis, respectively. Three-gene control with triplicate dominant epistasis was obtained in one of the crosses. This segregation pattern, however, needs further confirmation due to smaller population size. The absence of complementary gene action was obtained in 1 susceptible x susceptible and 27 resistant x resistant crosses as their F(1)s were susceptible and resistant, respectively, and F(2) generation lacked segregation.  相似文献   
34.
35.
Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0–2.0 × 106 cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples.  相似文献   
36.
Cardiomyocytes stop dividing after birth and postnatal heart growth is only achieved by increase in cell volume. In some species, cardiomyocytes undergo an additional incomplete mitosis in the first postnatal week, where karyokinesis takes place in the absence of cytokinesis, leading to binucleation. Proteins that regulate the formation of the actomyosin ring are known to be important for cytokinesis. Here we demonstrate for the first time that small GTPases like RhoA along with their downstream effectors like ROCK I, ROCK II and Citron Kinase show a developmental stage specific expression in heart, with high levels being expressed in cardiomyocytes only at stages when cytokinesis still occurs (i.e. embryonic and perinatal). This suggests that downregulation of many regulatory and cytoskeletal components involved in the formation of the actomyosin ring may be responsible for the uncoupling of cytokinesis from karyokinesis in rodent cardiomyocytes after birth. Interestingly, when the myocardium tries to adapt to the increased workload during pathological hypertrophy a re-expression of proteins involved in DNA synthesis and cytokinesis can be detected. Nevertheless, the adult cardiomyocytes do not appear to divide despite this upregulation of the cytokinetic machinery. The inability to undergo complete division could be due to the presence of stable, highly ordered and functional sarcomeres in the adult myocardium or could be because of the inefficiency of degradation pathways, which facilitate the division of differentiated embryonic cardiomyocytes by disintegrating myofibrils.  相似文献   
37.
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.  相似文献   
38.
Summary A method for the production of hairy roots of Aconitum heterophyllum wall. is reported for the first time. Embryogenic callus cultures were successfully transformed using Agrobacterium rhizogenes strains viz. LBA 9402, LBA 9360, and A4 for the induction of hairy roots. The transgenic nature of hairy roots was confirmed by mannopine assay using paper electrophoresis. Best growth of transformed roots was obtained on 1/4 MS (Murashige and Skoog, 1962) medium with 3% sucrose. Total alkaloid (aconites) content of transformed roots was 2.96%, which was 3.75 times higher compared to 0.79% in the nontransformed (control) roots. Thin layer chromatography (TLC) analysis of the components of aconites in the transformed roots revealed the presence of heteratisine, atisine, and hetidine.  相似文献   
39.
The phenomenon of monoclonal antibody (mAb) interchain disulfide bond reduction during manufacturing processes continues to be a focus of the biotechnology industry due to the potential for loss of product, increased complexity of purification processes, and reduced stability of the drug product. We hypothesized that antibody reduction can be mitigated by controlling the cell culture redox potential and subsequently established a threshold redox potential above which the mAb remained intact and below which there were significant and highly variable amounts of reduced mAb. Using this knowledge, we developed three control schemes to prevent mAb reduction in the bioreactor by controlling the cell culture redox potential via an online redox probe. These control methodologies functioned by increasing the concentration of dissolved oxygen (DO), copper (II) (Cu), or both DO and Cu to maintain the redox potential above the threshold value. Using these methods, we were able to demonstrate successful control of antibody reduction. Importantly, the redox control strategies did not significantly impact the cell growth, viability, mAb production, or product quality attributes including aggregates, C-terminal lysine, high mannose, deamidation, and glycation. Our results demonstrate that controlling the cell culture redox potential is a simple and effective method to prevent mAb reduction.  相似文献   
40.
Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号