首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2003年   4篇
  2002年   7篇
  2000年   2篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
31.
32.
Abstract

In an effort to explore the biochemical mode of guanase inhibition as well as the structure-activity relationships of azepinomycin, five analogues (I-V) of azepinomycin were synthesized and screened against guanase from rabbit liver. Our results suggest that while the 6-hydroxy group of azepinomycin is crucial for activity, its putative transition state mode of inhibition of guanase is questionable. The additional H-bonding sites at position 5, and hydrophobic groups in and around position 3 of azepinomycin appear to be tolerated, and may in fact enhance the potency of inhibition.  相似文献   
33.

Background

Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC.

Methodology/Principal Findings

BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the ∼29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5′AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5′AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5′AMP. Docking simulations also suggest that bio-5′AMP hydrogen bonds to the conserved ‘GRGRRG’ sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The Km for BCCP was ∼5.2 µM and ∼420 nM for biotin. MtBPL has low affinity (Kb = 1.06×10−6 M) for biotin relative to EcBirA but their Km are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5′AMP by EcBirA is channeled for its repressor activity.

Conclusions/Significance

These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.  相似文献   
34.
Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-à-vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe–mineral interaction are discussed.  相似文献   
35.
Linseed commonly called as flaxseed (Linum usitatissimum Linn.) is an important oilseed crop cultivated widely in Northern parts of Karnataka. During, 2019 (January–February), a characteristic disease was noticed with symptoms that resembled phytoplasma or like disease symptoms. The incidence was ranged from 6·5 to 16·5% in the experimental station of Raichur Agricultural University. The typical symptoms observed were virescence of floral parts, fasciation of the inflorescence axis, phyllody, stunted and flattened stem with reduced leaves. Symptomatic and healthy samples were collected and processed for molecular detection of phytoplasma. Total DNA was isolated from four infected plants and two healthy plants. The 16S rDNA region was amplified using P1/P7 followed by R16F2n/R16R2 primer pair which showed the amplification of expected amplicon size from all four infected samples. Furthermore, the SecA gene was amplified using SecA1/SecA3 primers. The PCR amplified products were subjected for direct sequencing from both directions and the consensus sequences were obtained and nBLAST search analysis revealed that the 16Sr RNA and SecA sequences were sharing maximum similarity (100%) with the reference sequence of Ca. P. cynodontis. The sequences were analysed phylogenetically by constructing a Phylogram independently by NJ method along with reference sequence of 16S rRNA region and SecA region retrieved from GenBank database showed that the phytoplasma sequence from linseed phyllody of the present study placed in a distinct clade along with reference sequence of “Ca. P. cynodontis” thus confirming the identity phylogenetically. Furthermore, iPhyClassifier and virtual RFLP proved that the phytoplasma belonged to 16SrXIV (subgroup A) phytoplasma. Previously linseed is known to be associated with 16SrII-D phytoplasma but the association of the 16SrXIV-A group of phytoplasma is not reported so far. Therefore, this is the new host record for Ca. P. cynodontis (16SrXIV-A) phytoplasma associated with linseed stem fasciation, phyllody from India.  相似文献   
36.
Summary A simple method for the synthesis of several amino acid benzyl esterp-toluenesulfonate salts from the corresponding amino acid and benzyl alcohol in presence ofp-toluenesulfonic acid accelerated with microwave irradiation is described. Under similar condition, the amino acid benzyl ester hydrochloride salts have also been obtained by using thionyl chloride instead ofp-toluenesulfonic acid in good yield and purity.  相似文献   
37.
Abstract

Synthesis and biochemical screening against guanase of analogues of the naturally occurring guanase inhibitor azepinomycin (2) are reported. Compound e-amino-5,6,7,8,-tetrahydro-4H-imidazo[4,5-e][1,4]diazepine-5,8-dione (3) was synthesized in six steps commencing with 1-benzyl-5-nitroimidazole-4-carboxylic acid (5). Compound 3 and its synthetic precursor 3-benzyl-6-(N-benzyloxycarbonyl)amino-5,6,7,8-tetrahydro-4H-imidazo[4,5-e][1,4]diazepine-5,8-dione (12) were screened against rabbit liver guanase. Both were found to be moderate inhibitors of the enzyme with K1′s in the range of 10?4 M.  相似文献   
38.
Cultural heritage materials are particularly susceptible to biodeterioration by fungi. Improper care and storage of artifacts contaminated with fungal material can promote the growth of these microscopic organisms and the inevitable deterioration that follows. Technology capable of detecting vegetative fungi and their reproductive structures could facilitate the struggle against fungal biodeterioration. Archivists and conservators could be notified of fungal contamination within a collection and apply pre-emptive measures, such as modification of environmental conditions, to prevent biodeterioration. The aim of this study was to improve and simplify a fluorometric assay used for the early detection of minute quantities of fungal biomass on cultural heritage materials. To this end we have successfully developed a non-fluidic assay in which fluid transfers, centrifugation steps, and much of the specialized equipment formerly needed to perform the assay are eliminated. The time required for completion of the assay was reduced to 30 min. Use of the assay was also expanded to include the early detection of viable fungal conidia from several species of fungi. These refinements will expedite implementation of this technology by archivists and conservators as they monitor and combat the fungal deterioration of cultural heritage materials.  相似文献   
39.
Arthritis and other rheumatoid or non-rheumatoid joint inflammations are prevalent among people all around the world. The plant-derived drugs and other herbal therapeutic practices are widely used against these malfunctions. Helicanthes elasticus (Desv.) Danser, an endemic hemiparasite was found less exploited for these types of disorders and this plant collected from different hosts might be having differential expression towards such ailments. In order to asses this differential expression, in the present study, methanolic extract of Helicanthes elasticus collected from six different hosts were examined for HRBC membrane stabilization assay for anti-inflammatory responses and the protein denaturation method for anti-arthritic assay. Anti-inflammatory and anti-arthritic potential were observed in H. elasticus growing on different hosts. The hemiparasitic plant obtained from Hevea brasiliensis, Nerium oleander and Anacardium occidentale showed high anti-inflammatory responses whereas those from Nerium oleander had high anti-arthritic efficacy. H. elasticus showed a therapeutically significant effect on arthritis and inflammatory responses in humans and the efficacy of the curative property showed variation with respect to the host plant in which the parasite has hemiparasite found growing.  相似文献   
40.
Biotin is an essential enzyme cofactor required for carboxylation and transcarboxylation reactions. The absence of the biotin biosynthesis pathway in humans suggests that it can be an attractive target for the development of novel drugs against a number of pathogens. 7-Keto-8-aminopelargonic acid (KAPA) synthase (EC 2.3.1.47), the enzyme catalyzing the first committed step in the biotin biosynthesis pathway, is believed to exhibit high substrate stereospecificity. A comparative kinetic characterization of the interaction of the mycobacterium tuberculosis KAPA synthase with both L- AND D-alanine was carried out to investigate the basis of the substrate stereospecificity exhibited by the enzyme. The formation of the external aldimine with D-alanine (k = 82.63 m(-1) s(-1)) is approximately 5 times slower than that with L-alanine (k = 399.4 m(-1) s(-1)). In addition to formation of the external aldimine, formation of substrate quinonoid was also observed upon addition of pimeloyl-CoA to the preformed d-alanine external aldimine complex. However, the formation of this intermediate was extremely slow compared with the substrate quinonoid with L-alanine and pimeloyl-CoA (k = 16.9 x 10(4) m(-1) s(-1)). Contrary to earlier reports, these results clearly show that D-alanine is not a competitive inhibitor but a substrate for the enzyme and thereby demonstrate the broad substrate stereospecificity of the M. tuberculosis KAPA synthase. Further, d-KAPA, the product of the reaction utilizing D-alanine inhibits both KAPA synthase (Ki = 114.83 microm) as well as 7,8-diaminopelargonic acid synthase (IC50 = 43.9 microm), the next enzyme of the pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号