首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1487篇
  免费   76篇
  2023年   10篇
  2022年   31篇
  2021年   33篇
  2020年   17篇
  2019年   31篇
  2018年   41篇
  2017年   31篇
  2016年   39篇
  2015年   55篇
  2014年   83篇
  2013年   104篇
  2012年   137篇
  2011年   132篇
  2010年   65篇
  2009年   52篇
  2008年   78篇
  2007年   70篇
  2006年   63篇
  2005年   54篇
  2004年   42篇
  2003年   40篇
  2002年   50篇
  2001年   24篇
  2000年   18篇
  1999年   17篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1993年   6篇
  1992年   16篇
  1991年   12篇
  1990年   12篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   17篇
  1984年   14篇
  1983年   9篇
  1982年   11篇
  1981年   11篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1977年   7篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1966年   4篇
排序方式: 共有1563条查询结果,搜索用时 31 毫秒
51.
New antibiotics with novel mechanisms of action are urgently needed to overcome the growing bacterial resistance problem faced by clinicians today. PC190723 and related compounds represent a promising new class of antibacterial compounds that target the essential bacterial cell division protein FtsZ. While this family of compounds exhibits potent antistaphylococcal activity, they have poor activity against enterococci and streptococci. The studies described herein are aimed at investigating the molecular basis of the enterococcal and streptococcal resistance to this family of compounds. We show that the poor activity of the compounds against enterococci and streptococci correlates with a correspondingly weak impact of the compounds on the self-polymerization of the FtsZ proteins from those bacteria. In addition, computational and mutational studies identify two key FtsZ residues (E34 and R308) as being important determinants of enterococcal and streptococcal resistance to the PC190723-type class of compounds.  相似文献   
52.
Cytokinins are master regulators of plant growth and development. They are involved in the regulation of many important physiological and metabolic processes. Recent progress in cytokinin research at the molecular level, including identification of related genes and cytokinin receptors, plus elucidation of signal transduction, has greatly increased our understanding of cytokinin actions. Although still in its infant stage, molecular breeding of crops with altered cytokinin metabolism, when combined with the transgenic approach, has shown very promising potential for application to agriculture. In this review we briefly introduce recent progress in cytokinin molecular biology, discuss applications of cytokinin genetic engineering to agriculture, and present implications and future research directions.  相似文献   
53.
ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca2+/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease.  相似文献   
54.
A Bacillus sp. isolated from sediments of distillery unit was found to overproduce laccase when cultured in a synthetic media containing 1mM CuSO4 and 10% distillery spent wash as inducers along with 1% dextrose (w/v) and 0.1% tryptone (w/v) as additional carbon and nitrogen sources. The extracellular purified enzyme was highly thermostable with a calculated half-life of 23 min at 75°C. The optimal pH and temperature of the Bacillus sp. laccase were recorded to be 3.0 and 35°C, respectively. Sodium azide and solvents like methanol and acetonitrile completely inhibited enzyme activity. The average molecular weight of the purified enzyme as determined by SDS-PAGE and zymogam studies was around 70 kDa. Kinetic parameters were detected by using 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as substrate. At high ABTS concentrations (> 6 mM) a substrate inhibition phenomenon appeared and K M (0.60 mM), V max (983.00 U/min) values were determined. The polypeptide sequences showed significant similarity with Cudependent oxidoreductases through MALDI-TOF MS analysis. In addition, the crude Bacillus sp. laccase showed enormous potential for decolorization of various recalcitrant dyes. The apparent high stability of this enzyme makes it a good candidate for its possible application in biotechnology.  相似文献   
55.
Human cells utilize a variety of complex DNA repair mechanisms in order to combat constant mutagenic and cytotoxic threats from both exogenous and endogenous sources. The RecQ family of DNA helicases, which includes Bloom helicase (BLM), plays an important function in DNA repair by unwinding complementary strands of duplex DNA as well as atypical DNA structures such as Holliday junctions. Mutations of the BLM gene can result in Bloom syndrome, an autosomal recessive disorder associated with cancer predisposition. BLM-deficient cells exhibit increased sensitivity to DNA damaging agents indicating that a selective BLM inhibitor could be useful in potentiating the anticancer activity of these agents. In this work, we describe the medicinal chemistry optimization of the hit molecule following a quantitative high-throughput screen of >355,000 compounds. These efforts lead to the identification of ML216 and related analogs, which possess potent BLM inhibition and exhibit selectivity over related helicases. Moreover, these compounds demonstrated cellular activity by inducing sister chromatid exchanges, a hallmark of Bloom syndrome.  相似文献   
56.
Lipophilic chalcones and their conformationally restricted analogues were synthesized and evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv strain. Compounds 16, 24, 25a and 25c were found to be active MIC at 60, 30, 3.5 and 7.5 μg-mL?1. In vitro cytotoxicity of compounds 16, 24, 25a, 25c and 26 in non-cancerous human epithelial kidney cell line (HEK-293) showed that most active compound 25a was approximately 2.85 times selective towards tubercular versus healthy cells whereas compound 24 was found to be 16 times selective.  相似文献   
57.
Clostridium perfringens epsilon toxin (Etx) is a pore‐forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx‐H149A), previously reported to have reduced, but not abolished, toxicity. The three‐dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx‐H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx‐H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx‐H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx‐H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx‐H149A identified a glycan (β‐octyl‐glucoside) binding site in domain III of Etx‐H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.  相似文献   
58.
59.
ProjectSelenium deficiency has been associated with enhanced propensity of seizures in man and laboratory animals. Therefore, the present study has been designed to investigate the anti-convulsant effect of sodium selenite and seleno-dl-methionine on pentylenetetrazole induced seizures in mice and the role of prostaglandin receptor activation in the proposed anticonvulsant effect of sodium selenite.ProcedureSodium selenite (1, 3 and 10 mg kg?1, i.p.) and seleno-dl-methionine (0.3, 1 and 3 mg kg?1, i.p.) was used to evaluate the potential effect on pentylenetetrazole induced seizures in mice. Pentylenetetrazole induced seizures were assessed in terms of onset time of straub's tail phenomenon, jerky movements of the whole body and convulsions. Additionally, an isobolographic study design was used to examine the interaction between sodium selenite and celecoxib (a cyclooxygenase-2 inhibitor). Sodium selenite and seleno-dl-methionine significantly attenuated pentylenetetrazole induced seizures in mice.ResultsPrior administration of misoprostol (a selective agonist of prostaglandin E1 receptors) markedly attenuated the anticonvulsant effect of sodium selenite as well as seleno-dl-methionine in mice. However, the administration of misoprostol per se did not produce any behavioral changes. Further, sodium selenite was observed to exert a synergistic interaction with celecoxib.ConclusionsSelenium induced reduction in seizure like behavior might be ascribed to the activation of a prostaglandin E1 receptor activation linked mechanism. It is further proposed that sodium selenite exerts a synergistic anti-convulsant effect with celecoxib indicating the therapeutic usefulness of combining the two agents to treat epilepsy.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号