首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1207篇
  免费   56篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   20篇
  2021年   32篇
  2020年   15篇
  2019年   15篇
  2018年   34篇
  2017年   32篇
  2016年   46篇
  2015年   79篇
  2014年   85篇
  2013年   126篇
  2012年   117篇
  2011年   98篇
  2010年   64篇
  2009年   58篇
  2008年   62篇
  2007年   66篇
  2006年   59篇
  2005年   53篇
  2004年   39篇
  2003年   48篇
  2002年   36篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1264条查询结果,搜索用时 15 毫秒
11.
Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics   总被引:12,自引:3,他引:12  
Nitroaromatic compounds constitute a major class of widely distributed environmental contaminants. Compounds like nitrobenzene, nitrotoluenes, nitrophenols, nitrobenzoates and nitrate esters are of considerable industrial importance. They are frequently used as pesticides, explosives, dyes, and in the manufacture of polymers and pharmaceuticals. Many nitroaromatic compounds and their conversion products have been shown to have toxic or mutagenic properties. Most of them are biodegradable in nature by various microorganisms. However, most contaminated environments have combinations of nitroaromatic compounds present, which complicates the bioremediation efforts. During the last 10 years, research on the biodegradation of nitroaromatic compounds has yielded a wealth of information on the microbiological, biochemical and genetic aspects of the process. New metabolic pathways have been discovered and genes and enzymes responsible for key transformation reactions have been identified and characterized. Knowledge and advances in pathway engineering have helped further understanding of the nature of nitroaromatic biodegradation and the development of bioremediation solutions. In this paper, an overview of recent developments on the biodegradation of nitrogen-containing xenobiotics is presented.  相似文献   
12.
Phosphate (Pi) transporters mediate acquisition and transportation of Pi within plants. Here, we investigated the functions of OsPht1;4 (OsPT4), one of the 13 members of the Pht1 family in rice. Quantitative real‐time RT‐PCR analysis revealed strong expression of OsPT4 in roots and embryos, and OsPT4 promoter analysis using reporter genes confirmed these findings. Analysis using rice protoplasts showed that OsPT4 localized to the plasma membrane. OsPT4 complemented a yeast mutant defective in Pi uptake, and also facilitated increased accumulation of Pi in Xenopus oocytes. Further, OsPT4 genetically modified (GM) rice lines were generated by knockout/knockdown or over‐expression of OsPT4. Pi concentrations in roots and shoots were significantly lower and higher in knockout/knockdown and over‐expressing plants, respectively, compared to wild‐type under various Pi regimes. 33Pi uptake translocation assays corroborated the altered acquisition and mobilization of Pi in OsPT4 GM plants. We also observed effects of altered expression levels of OsPT4 in GM plants on the concentration of Pi, the size of the embryo, and several attributes related to seed development. Overall, our results suggest that OsPT4 encodes a plasma membrane‐localized Pi transporter that facilitates acquisition and mobilization of Pi, and also plays an important role in development of the embryo in rice.  相似文献   
13.
14.
In this research, we studied the relationship between the molecular structure of (R)-12-hydroxyoctadecanamide, (R)-N-propyl-12-hydroxyoctadecanamide, and (R)-N-octadecyl-12-hydroxyoctadecanamide and the thermo-mechanical properties of their 2% (wt/wt) organogels developed using safflower oil high in oleic acid (HOSFO) as the liquid phase. Candelilla wax (CW), a well-known edible gelling additive whose main component is hentriacontane, also was studied for comparative purposes. The results obtained show that the attractive interactions (i.e., hydrogen bonding and dipolar interactions) between amide groups and between hydroxyl groups present in the amides resulted in organogels with higher melting temperature, heat of melting, and crystallization parameters than those found in the CW organogel. The rheological parameters associated to the strength of the amide or CW-based gels developed in HOSFO (i.e., yield stress and elastic modulus) seem to be associated with the nature of amide groups (i.e., primary or secondary amide) and the increase in the length of the self-assembly molecular unit (i.e., L value determined by X-ray diffraction) and therefore to the extent of London dispersion forces along the hydrocarbon chain. The creep and recovery measurements allowed an evaluation among the internal structures of the different organogels and demonstrated that independent of the hydrogen bonding and dipolar interaction provided by the amide and the hydroxyl groups, the increase in the hydrocarbon chain length results in higher organogel resistance to deformation and higher instant recovery capacity. However, the stabilization of the self-assembly unit through polar groups (i.e., –CONH2 in HOA) reduces organogel elasticity but provides a higher extended recovery capacity. The results reported in this investigation showed some relationships between gelator structure and the thermo-mechanical properties of low-molecular-mass organic gelator amides. Our long-term objective is to understand the organogelation process to eventually develop trans-free vegetable oil-based food products with novel textures for the consumers.  相似文献   
15.
During the survey of two successive years 2012–2013, in nearby places of Gorakhpur districts, Uttar Pradesh, India, Arundo donax plants were found to be exhibiting witches’ broom, excessive branching accompanied with little leaf symptoms with considerable disease incidence. Nested PCR carried out with universal primers pair R16F2n/R16R2 employing the PCR (P1/P7) product as a template DNA (1:20) resulted in expected size positive amplification ~1.2 kb in all symptom-bearing plants suggested the association of phytoplasma with witches’ broom disease of Narkat plants. BLASTn analysis of the 16S rRNA gene sequence showed the highest (99%) sequence identity with Candidatus phytoplasma asteris (16SrI group). In phylogenetic analysis, the sequence data showed close relationships with the members of 16SrI phytoplasma and clustered within a single clade of 16SrI group and closed to B subgroup representatives. This is a first report of 16Sr I-B group phytoplasma associated with witches’ broom accompanied with little leaf disease of Narkat in India.  相似文献   
16.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   
17.
18.
Molecular Biology Reports - Plant-derived phytochemicals such as flavonoids have been explored to be powerful antioxidants that protect against oxidative stress-related diseases. In the present...  相似文献   
19.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号