首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   73篇
  国内免费   1篇
  1566篇
  2023年   9篇
  2022年   23篇
  2021年   44篇
  2020年   20篇
  2019年   17篇
  2018年   37篇
  2017年   41篇
  2016年   54篇
  2015年   92篇
  2014年   101篇
  2013年   150篇
  2012年   136篇
  2011年   115篇
  2010年   74篇
  2009年   68篇
  2008年   75篇
  2007年   80篇
  2006年   66篇
  2005年   63篇
  2004年   51篇
  2003年   57篇
  2002年   49篇
  2001年   12篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   10篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1974年   3篇
  1972年   4篇
  1971年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有1566条查询结果,搜索用时 0 毫秒
81.
Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis   总被引:1,自引:1,他引:1  
MicroRNA398 targets two Cu/Zn superoxide dismutases (CSD1 and CSD2) in higher plants. Previous investigations revealed both decreased miR398 expression during high Cu2+ or paraquat stress and increased expression under low Cu2+ or high sucrose in the growth medium. Here, we show that additional abiotic stresses such as ozone and salinity also affect miR398 levels. Ozone fumigation decreased miR398 levels that were gradually restored to normal levels after relieved from the stress. Furthermore, miR398 levels decreased in Arabidopsis leaves infiltrated with avirulent strains of Pseudomonas syringae pv. tomato, Pst DC3000 (avrRpm1 or avrRpt2) but not the virulent strain Pst DC3000. To our knowledge, miR398 is the first miRNA shown to be down-regulated in response to biotic stress (P. syringae). CSD1, but not CSD2, mRNA levels were negatively correlated with miR398 levels during ozone, salinity and biotic stress, suggesting that CSD2 regulation is not strictly under miR398 control during diverse stresses. Overall, this study further establishes a link between oxidative stress and miR398 in Arabidopsis.  相似文献   
82.
Urinary excretion of 17-ketosteroid (17-KS) was assessed in male pre-pubertal subjects aged (8–11 years; n = 90). Children living near sewage treatment plant and solid waste disposal plant (Group P) showed significantly higher levels of urinary 17-KS (Group P: 3.27 ± 1.63 µg/mL/CRE; p < 0.01) than children living in cleaner area (0.50 ± 0.53 µg/mL/CRE; Group C). Occurrence of urinary dibutyl phthalate in representative subjects of Group P (odds ratio: 9; p < 0.05; 95% of Confidence interval (CI) 1.93–72.99) was higher compared to Group C. Urinary concentrations of Cd (0.85 µg/g CRE ± 0.11), Mn (24.25 µg/g CRE ± 6.11) and Pb (12.39 µg/g CRE ± 2.86) in Group P were significantly (p < 0.01) higher than those found in Group C (Cd (0.28 µg/g CRE ± 0.03), Mn (13.33 µg/g CRE ± 3.20) and Pb (5.67 µg/g CRE ± 0.53)). Analyses of ambient air samples (PM10) in polluted area revealed major occurrence of phthalates, whereas derivatives of trifluoromethyl, dione, etc. were identified in PM2.5 fraction. Metal (Cd, Co, Mn and Pb) concentrations in ambient air (24 h, PM10) were higher in polluted area compared to cleaner area. We conclude that elevated levels of urinary 17-KS in Group P could be attributed to higher exposure of these subjects to Endocrine disrupting chemicals (EDCs) compared to Group C.  相似文献   
83.
Phosphorus, one of the essential elements for plants, is often a limiting nutrient in soils. Low phosphate (Pi) availability induces sugar-dependent systemic expression of genes and modulates the root system architecture (RSA). Here, we present the differential effects of sucrose (Suc) and auxin on the Pi deficiency responses of the primary and lateral roots of Arabidopsis (Arabidopsis thaliana). Inhibition of primary root growth and loss of meristematic activity were evident in seedlings grown under Pi deficiency with or without Suc. Although auxin supplementation also inhibited primary root growth, loss of meristematic activity was observed specifically under Pi deficiency with or without Suc. The results suggested that Suc and auxin do not influence the mechanism involved in localized Pi sensing that regulates growth of the primary root and therefore delineates it from sugar-dependent systemic Pi starvation responses. However, the interaction between Pi and Suc was evident on the development of the lateral roots and root hairs in the seedlings grown under varying levels of Pi and Suc. Although the Pi+ Suc- condition suppressed lateral root development, induction of few laterals under the Pi- Suc- condition point to increased sensitivity of the roots to auxin during Pi deprivation. This was supported by expression analyses of DR5uidA, root basipetal transport assay of auxin, and RSA of the pgp19 mutant exhibiting reduced auxin transport. A significant increase in the number of lateral roots under the Pi- Suc- condition in the chalcone synthase mutant (tt4-2) indicated a potential role for flavonoids in auxin-mediated Pi deficiency-induced modulation of RSA. The study thus demonstrated differential roles of Suc and auxin in the developmental responses of ontogenetically distinct root traits during Pi deprivation. In addition, lack of cross talk between local and systemic Pi sensing as revealed by the seedlings grown under either the Pi- Suc- condition or in the heterogeneous Pi environment highlighted the coexistence of Suc-independent and Suc-dependent regulatory mechanisms that constitute Pi starvation responses.  相似文献   
84.
Binding sites for three families of sequence-specific DNA-binding proteins, microE3, C/EBP, and OCT, are found in both the promoters and the intronic enhancer of the immunoglobulin heavy-chain gene. We have used a cotransfection system to investigate how proteins binding these sites may participate in enhancer-promoter interactions. Basic helix-loop-helix-zipper (BHLHZIP) proteins TFE3 and TFEB activate from a distance in this assay, but the basic zipper (BZIP) protein NF-IL6 and endogenous OCT-binding proteins do not. Our results suggest that remotely bound TFE3 is recruited to the initiation site by association with proximally bound TFE3; this interaction is mediated by the BHLHZIP domain and not by activation domains of TFE3. The BZIP domain of Ig/EBP lacks this activity, revealing an important functional difference between these structurally related dimerization domains. We also show that TFE3 can exist as a tetramer in solution and that tetramerization is determined by the HLHZIP domain. These data support a model in which protein-protein interactions between proximally and remotely bound TFE3 recruit TFE3 to the initiation site for activation. The IgH gene is the first example of a cellular gene in which proximal and distal binding sites are found for a protein capable of mediating enhancer-promoter interaction.  相似文献   
85.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   
86.
Abstract

Prolyl oligopeptidase (POP) enzyme has been studied for various disorders, viz. Schizophrenia, Alzheimer’s, Parkinson’s, Depression, Inflammation, etc., for three decades, but no drug has passed through the clinical trials, possibly because of indigent pharmacokinetics. This might have been a result of similar structures of drug candidates. This study aimed at identifying novel small non-peptidomimetic inhibitors for POP enzyme that could serve as a lead for developing newer drugs. Structure-based virtual screening of molecules of MolMall database was conducted on the POP enzyme (PDB ID 3DDU) to identify potential hits. The hits identified were subjected to computational pharmacokinetic screening followed by molecular mechanics/generalized Born and surface area studies to estimate the binding free energy of the docked complexes. After that, nine hits were selected and tested for POP inhibitory activity, among which one compound MM 4 was found to be most potent with EC50 of 100 µM. Compound MM 4 was further subjected to molecular dynamics simulations to study the overall stability of the ligand–protein complex. The compound interacted strongly with catalytic amino acid Arg643 by forming salt and water bridges; it also interacted well with amino acids Phe173, Arg252 and Met235. This study provides a lead molecule for further development of POP inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   
87.
Monocytes play an important role in inflammation and atherosclerosis; however, the molecular details underlying these diverse functions are not completely understood. Proteomic analysis of monocytes can provide new insights into their biological role in coronary artery disease (CAD). Twenty angiographically confirmed male, CAD patients (≥50% stenosis) attending cardiology clinic of Nehru Hospital, PGIMER, Chandigarh, and who were not receiving any lipid lowering therapy and 20 TMT negative subjects who served as controls were enrolled in the study. Circulating monocytes isolated from overnight fasting blood samples were analyzed by 2D gel electrophoresis (pH 4-7), and differentially expressed protein spots were subjected to mass spectrometry and identification of proteins. We observed 333 ± 40 protein spots in monocytes from patients and 312 ± 20 in controls; out of which 63 protein spots showed altered intensity in CAD patients. Thirteen spots showed fivefold increased and two protein spots showed fivefold decreased expression in CAD group as compared to control group, respectively. Two proteins showing decreased expression in monocytes from CAD patients were identified as: (i) glutathione transferase and (ii) heat shock protein 70 KDa. Proteins showing increased expression in CAD patients were identified as: (i) vimentin, (ii) mannose binding lectin receptor protein, and (iii) S100A8 calcium-binding protein. The results of our study offer identification of several proteins in monocytes which can provide new perspectives in role of monocytes in pathogenesis of atherosclerosis.  相似文献   
88.
Potassium channels enable K(+) ions to move passively across biological membranes. Multiple nanosecond-duration molecular dynamics simulations (total simulation time 5 ns) of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal motions of ions, water, and protein. Comparison of simulations with and without K(+) ions indicate that the absence of ions destabilizes the structure of the selectivity filter. Within the selectivity filter, K(+) ions interact with the backbone (carbonyl) oxygens, and with the side-chain oxygen of T75. Concerted single-file motions of water molecules and K(+) ions within the selectivity filter of the channel occur on a 100-ps time scale. In a simulation with three K(+) ions (initially two in the filter and one in the cavity), the ion within the central cavity leaves the channel via its intracellular mouth after approximately 900 ps; within the cavity this ion interacts with the Ogamma atoms of two T107 side chains, revealing a favorable site within the otherwise hydrophobically lined cavity. Exit of this ion from the channel is enabled by a transient increase in the diameter of the intracellular mouth. Such "breathing" motions may form the molecular basis of channel gating.  相似文献   
89.
Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants.  相似文献   
90.
Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号