首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   73篇
  国内免费   1篇
  1566篇
  2023年   9篇
  2022年   23篇
  2021年   44篇
  2020年   20篇
  2019年   17篇
  2018年   37篇
  2017年   41篇
  2016年   54篇
  2015年   92篇
  2014年   101篇
  2013年   150篇
  2012年   136篇
  2011年   115篇
  2010年   74篇
  2009年   68篇
  2008年   75篇
  2007年   80篇
  2006年   66篇
  2005年   63篇
  2004年   51篇
  2003年   57篇
  2002年   49篇
  2001年   12篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   10篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   4篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1974年   3篇
  1972年   4篇
  1971年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有1566条查询结果,搜索用时 0 毫秒
61.
Presence and stability of an unusual phycoerythrin (PE) characteristically similar to R-PE are described in a terrestrial, desiccation-tolerant cyanobacterium, Lyngbya arboricola. Extraction and purification of the PE by using acetone precipitation, gel filtration and ion-exchange chromatography resulted in achieving a purity index (A560/A280) of up to 5.2. SDS-PAGE of the PE showed presence of 18 kDa, 20 kDa and 32 kDa bands corresponding to α, β and γ subunits of R-PE without any other contaminating phycobiliproteins (PBPs). The absorption spectrum of the PE was distinguished by two major peaks at 499 and 559 nm. The maximum fluorescence emission at room temperature was 578 nm. Spectroscopic and electrophoresis characteristics of PE in the dry mats on storage at 25 ± 1°C over silica gel for 2 years remained almost unaffected. Quantitatively, storage stability of the PE was in the order of dry mats > lyophilized > liquid state and the impact of temperature on loss of PE was in the order of 25°C > −20°C > 4°C. The relevance of L. arboricola for production of stable unusual PE is discussed.  相似文献   
62.
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4 −/−) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.  相似文献   
63.
In the preceding, accompanying article, we present models of the structure and voltage-dependent gating mechanism of the KvAP bacterial K+ channel that are based on three types of evidence: crystal structures of portions of the KvAP protein, theoretical modeling criteria for membrane proteins, and biophysical studies of the properties of native and mutated voltage-gated channels. Most of the latter experiments were performed on the Shaker K+ channel. Some of these data are difficult to relate directly to models of the KvAP channel's structure due to differences in the Shaker and KvAP sequences. We have dealt with this problem by developing new models of the structure and gating mechanism of the transmembrane and extracellular portions of the Shaker channel. These models are consistent with almost all of the biophysical data. In contrast, much of the experimental data are incompatible with the "paddle" model of gating that was proposed when the KvAP crystal structures were first published. The general folding pattern and gating mechanisms of our current models are similar to some of our earlier models of the Shaker channel.  相似文献   
64.
Diagnostic oncoproteomics is an emerging field; at present, studies on evaluation of prognostic utility of potential biomarkers identified using proteomic techniques are limited. Analysis with isobaric mass tags (iTRAQ) by multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) to identify proteins that are differentially expressed in human head-and-neck/oral squamous cell carcinomas (HNOSCCs) versus noncancerous head-and-neck tissues has led to the discovery, identification, and verification of consistently increased expression of a panel of proteins, including stratifin (14-3-3sigma) and YWHAZ (14-3-3zeta), that may serve as potential cancer biomarkers. Herein, we describe the prognostic utility of these two candidate biomarkers for head-and-neck/oral squamous cell carcinoma (HNOSCC). To determine the clinical significance of stratifin and YWHAZ in head-and-neck tumorigenesis, the expressions of these two proteins were analyzed in HNOSCCs (51 cases) and nonmalignant tissues (39 cases) using immunohistochemistry. Significant increase in stratifin expression was observed in the HNOSCCs as compared to the nonmalignant mucosa [p=0.003, Odd's Ratio (OR)=3.8, 95% CI=1.6-9.2]. Kaplan-Meier survival analysis reveals correlation of stratifin overexpression with reduced disease-free survival of HNOSCC patients (p=0.06). The most intriguing finding is the significant decrease in median disease-free survival (13 months) in HNOSCC patients showing overexpression of both stratifin and YWHAZ proteins, as compared to patients that did not show overexpression of these proteins (median disease-free survival=38 months, p=0.019), underscoring their utility as adverse prognosticators for HNOSCCs. Co-immunoprecipitation assays show the formation of stratifin-YWHAZ heterodimers in HNOSCC cells and tissue samples, and interactions with NFkappaB, beta-catenin, and Bcl-2 proteins. These results suggest the involvement of these proteins in the development of head-and-neck cancer and their association with adverse disease outcome.  相似文献   
65.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.  相似文献   
66.
RNA interference (RNAi) is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-stranded RNA molecules. RNAi has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. RNAi was first described in animal cells by Fire and colleagues in the nematode, Caenorhabditis elegans. Knowledge of RNAi mechanism in mammalian cell in 2001 brought a storm in the field of drug discovery. During the past few years scientists all over the world are focusing on exploiting the therapeutic potential of RNAi for identifying a new class of therapeutics. The applications of RNAi in medicine are unlimited because all cells possess RNAi machinery and hence all genes can be potential targets for therapy. RNAi can be developed as an endogenous host defense mechanism against many infections and diseases. Several studies have demonstrated therapeutic benefits of small interfering RNAs and micro RNAs in animal models. This has led to the rapid advancement of the technique from research discovery to clinical trials.  相似文献   
67.
Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2‐2 (also named tardy asynchronous meiosis‐2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy‐associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution. genesis 48:254–263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
68.
KcsA is a bacterial K+ channel that is gated by pH. Continuum dielectric calculations on the crystal structure of the channel protein embedded in a low dielectric slab suggest that side chains E71 and D80 of each subunit, which lie adjacent to the selectivity filter region of the channel, form a proton-sharing pair in which E71 is neutral (protonated) and D80 is negatively charged at pH 7. When K+ ions are introduced into the system at their crystallographic positions the pattern of proton sharing is altered. The largest perturbation is for a K+ ion at site S3, i.e., interacting with the carbonyls of T75 and V76. The presence of multiple K+ ions in the filter increases the probability of E71 being ionized and of D80 remaining neutral (i.e., protonated). The ionization states of the protein side chains influence the potential energy profile experienced by a K+ ion as it is translated along the pore axis. In particular, the ionization state of the E71-D80 proton-sharing pair modulates the shape of the potential profile in the vicinity of the selectivity filter. Such reciprocal effects of ion occupancy on side-chain ionization states, and of side-chain ionization states on ion potential energy profiles will complicate molecular dynamics simulations and related studies designed to calculate ion permeation energetics.  相似文献   
69.
A Schiff-base ligand with donor/acceptor substituents viz. 2, 3-bis?[(2-hydroxy-4-diethylamino) (phenyl) (methylene)]amino?-2-butenedinitrile was synthesized, its binding properties with bovine serum albumin (BSA) and its site-specific photocleavage in the presence of cobaltous chloride have been evaluated. The Schiff-base ligand showed increase in absorption with a 5-nm red shift in the absorption maximum consistent with the binding of Schiff-base ligand to hydrophobic sites on the protein. The binding plot obtained from the absorption titration gives a binding constant of 6.4 +/- 0.3 x 10(4) M(-1). The CD spectrum of BSA in presence of the ligand shows that binding of the ligand leads to a change in the helicity of the protein. This ligand has been found to induce site-specific photocleavage of the protein in the presence of cobaltous chloride. The gel electrophoresis pattern of a photolyzed sample of BSA/Schiff-base ligand/cobaltous chloride shows that protein is cleaved into two polypeptide fragments, indicating site-specific binding for the ligand to the protein.  相似文献   
70.
A Schiff base complex of chromium(III), transdiaqua[N,N'ethylenebis (salicylideneimine)chromium(III)]perchlorate, [Cr(salen)(OH(2))(2)](+), was found to have an inhibitory effect on the growth of Shigella dysenteriae. The chromium(III) complex was found to cure (remove) the invasive plasmid and thereby render the microbe more sensitive to the tested antibiotics. The loss in the catalytic activity of the isolated endo-alpha-N-acetyl galactosaminidase on mucin as a substrate was also observed in the presence of [Cr(salen)(OH(2))(2)](+). This suggests that [Cr(salen)(OH(2))(2)](+) is toxic to the microbe and could make the microbe non-pathogenic and non-invasive, thus establishing its role in microbiological applications to reduce the toxic potentials of a microbe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号