首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   16篇
  国内免费   13篇
  2023年   2篇
  2022年   2篇
  2021年   12篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   6篇
  2016年   10篇
  2015年   14篇
  2014年   32篇
  2013年   23篇
  2012年   24篇
  2011年   20篇
  2010年   16篇
  2009年   9篇
  2008年   14篇
  2007年   11篇
  2006年   7篇
  2005年   16篇
  2004年   8篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   8篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有298条查询结果,搜索用时 359 毫秒
31.
When attacked, many decapod crustaceans perform tailflips, which are triggered by a neural circuit that includes lateral giant interneurons, medial giant interneurons, and fast flexor motor giant neurons (MoGs). Slipper lobsters (Scyllaridae) lack these giant neurons, and it has been hypothesized that behavioral (e.g., digging) and morphological (e.g., flattening and armor) specializations in this group caused the loss of escape-related giant neurons. To test this hypothesis, we examined a species of spiny lobster, Panulirus argus. Spiny lobsters belong to the sister taxon of the scyllarids, but they have a more crayfish-like morphology than scyllarids and were predicted to have escape-related giant neurons. Ventral nerve cords of P. argus were examined using paraffin-embedded sections and cobalt backfills. We found no escape-related giant neurons and no large axon profiles in the dorsal region of the nerve cord of P. argus. Cobalt backfills showed one fewer fast flexor motor neuron than in species with MoGs and none of the fast flexor motor neurons show any of the anatomical specializations of MoGs. This suggests that all palinuran species lack this giant escape circuit, and that the loss of rapid escape behavior preceded, and may have driven, alternative predator avoidance and anti-predator strategies in palinurans.  相似文献   
32.
We report here a novel detection scheme for simultaneous detection of NADH and H(2)O(2) based on a bifunctional poly(thionine)-modified electrode. Electropolymerization of thionine on a "preanodized" screen-printed carbon electrode effectively lowers the oxidation potential of NADH to 0.15 V (vs. Ag/AgCl). Since poly(thionine) is also a well known electrochemical mediator for H(2)O(2) reduction, we further developed a poly(thionine)-modified ring disk electrode for simultaneous measurement of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) by flow injection analysis. By applying the optimized detection potentials of 0.2V and -0.2V at disk and ring electrodes, respectively, this system allows the simultaneous measurement of both analytes with good sensitivity (0.13 μA/mM for H(2)O(2) and 0.34 μA/mM for NADH) and limit of detection (1.74 μM and 26.0 μM for NADH and H(2)O(2)). This opens the possibility of a whole series of biosensor applications.  相似文献   
33.
34.

Background

Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.

Methodology/Principal Findings

THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression.

Conclusions/Significance

SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.  相似文献   
35.
Changes of bacterioplankton diversity in lake water were followed in triplicate, continuous-flow experimental tanks. Most probable numbers (MPN) were obtained for 95 different carbon sources using BIOLOG plates and were used to characterize bacterioplankton diversity. During 70 days of incubation, MPN declined for 15 of the 95 substrates while three of 95 appeared to be newly used, indicating functional succession in the bacterioplankton. Total bacterial cell abundance was constant from day 7 to day 70 of the incubation period. The succession of species composition of phyto- and zooplankton was also observed and suggested some involvement by phyto- and zooplankton species in the changes of bacterioplankton diversity. Thus, BIOLOG-based MPN assays is a simple but sensitive method for characterizing the changes in the bacterioplankton carbon utilization profile and is also useful for tracing the functional succession of bacterioplankton diversity within a community.  相似文献   
36.
37.
Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of four miRNAs in fatty livers. Upregulation of miR-34a and downregulation of miR-122 was found in livers of STZ-induced diabetic mice. These results demonstrate that distinct miRNAs are strongly dysregulated in NAFLD and hyperglycemia. Comparison between miRNA expressions in livers of ob/ob mice and STZ-administered mice further revealed upregulation of four miRNAs and downregulation of two miRNAs in livers of ob/ob mice, indicating that these miRNAs may represent a molecular signature of NAFLD. A distinctive miRNA expression pattern was identified in ob/ob mouse liver, and hierarchical clustering of this pattern could clearly discriminate ob/ob mice from either normal C57BL/6 mice or STZ-administered mice. These findings suggest an important role of miRNAs in hepatic energy metabolism and implicate the participation of miRNAs in the pathophysiological processes of NAFLD.  相似文献   
38.
A pure strain of Microbacterium lacticum DJ-1 capable of anaer-obic biodegradation of ethylbenzene was isolated from soil contaminated with gasoline. Growth of the strain and biodegradation of ethylbenzene in batch cultures led to stoichiometric reduction of nitrate. M. lacticum DJ-1 could degrade 100 mg L?1 of ethylbenzene completely, with a maximum degradation rate of 15.02 ± 1.14 mg L?1 day?1. Increasing the initial concentration of ethy-lbenzene resulted in decreased degradative ability. The cell-specific growth rates on ethylbenzene conformed to the Haldane–Andrew model in the substrate level range of 10–150 mg L?1. Kinetic parameters were determined by nonlinear regression on specific growth rates and various initial substrate concentrat-ions, and the values of the maximum specific growth rate, half saturation constant, and inhibition constant were 0.71 day?1, 34.3 mg L?1, and 183.5 mg L?1, respectively. This is the first report of ethylbenzene biodegradation by a bacterium of Microbacterium lacticum under nitrate-reducing conditions.  相似文献   
39.
40.
Relationships between the NO synthase inhibitor and gastric and pancreaticobiliary functions measured simultaneously in the digestive state have been little studied. The aim of this study was to estimate the effect of NO synthase inhibitor on integrated digestive function in conscious dogs. A strain gauge force transducer was implanted on the gastric antrum of 6 mongrel dogs to measure gastric contractile activity and two duodenal cannulas were inserted into the proximal and distal sites to measure the gastric emptying rate and the pancreaticobiliary output into the duodenum using our novel method. Postprandial pancreatic and biliary secretion were presented as amylase and bile acid activity, respectively. Furthermore, a cervical cannula was placed into the superior vena cava as a route for the administration of NO synthase inhibitor, N omega-nitro-L-arginine (L-NNA), at a dose of 2.5 mg/kg-h. In a group given L-NNA, gastric contractile activity after ingestion was significantly enhanced, but the emptying rates of gastric solids and liquids were significantly suppressed in comparison with the control. The mean 0-1 h amylase integrated output was significantly (P < 0.05) decreased in comparison with the control, and the mean bile acid integration of 0-1 h output was also significantly (P < 0.01) decreased. A possible explanation for this observation is that smaller volumes of nutrient are delivered into the duodenum; however, it could also be that postprandial pancreaticobiliary secretion is inhibited by an alteration of blood flow or by a change in contractions of the sphincter of Oddi after the administration of L-NNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号