首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   14篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   2篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   2篇
  2015年   9篇
  2014年   11篇
  2013年   12篇
  2012年   16篇
  2011年   11篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   4篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
排序方式: 共有135条查询结果,搜索用时 17 毫秒
11.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   
12.
Tuberculosis continues to be a global health threat, making bicyclic nitroimidazoles an important new class of therapeutics. A deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis catalyzes the reduction of nitroimidazoles such as PA-824, resulting in intracellular release of lethal reactive nitrogen species. The N-terminal 30 residues of Ddn are functionally important but are flexible or access multiple conformations, preventing structural characterization of the full-length, enzymatically active enzyme. Several structures were determined of a truncated, inactive Ddn protein core with and without bound F(420) deazaflavin coenzyme as well as of a catalytically competent homolog from Nocardia farcinica. Mutagenesis studies based on these structures identified residues important for binding of F(420) and PA-824. The proposed orientation of the tail of PA-824 toward the N terminus of Ddn is consistent with current structure-activity relationship data.  相似文献   
13.
The bicyclic 4-nitroimidazoles PA-824 and OPC-67683 represent a promising novel class of therapeutics for tuberculosis and are currently in phase II clinical development. Both compounds are pro-drugs that are reductively activated by a deazaflavin (F(420)) dependent nitroreductase (Ddn). Herein we describe the biochemical properties of Ddn including the optimal enzymatic turnover conditions and substrate specificity. The preference of the enzyme for the (S) isomer of PA-824 over the (R) isomer is directed by the presence of a long hydrophobic tail. Nitroimidazo-oxazoles bearing only short alkyl substituents at the C-7 position of the oxazole were reduced by Ddn without any stereochemical preference. However, with bulkier substitutions on the tail of the oxazole, Ddn displayed stereospecificity. Ddn mediated metabolism of PA-824 results in the release of reactive nitrogen species. We have employed a direct chemiluminescence based nitric oxide (NO) detection assay to measure the kinetics of NO production by Ddn. Binding affinity of PA-824 to Ddn was monitored through intrinsic fluorescence quenching of the protein facilitating a turnover-independent assessment of affinity. Our results indicate that (R)-PA-824, despite not being turned over by Ddn, binds to the enzyme with the same affinity as the active (S) isomer. This result, in combination with docking studies in the active site, suggests that the (R) isomer probably has a different binding mode than the (S) with the C-3 of the imidazole ring orienting in a non-productive position with respect to the incoming hydride from F(420). The results presented provide insight into the biochemical mechanism of reduction and elucidate structural features important for understanding substrate binding.  相似文献   
14.
15.
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.  相似文献   
16.
17.
Hemopexin (Hpx) binds heme with extraordinary affinity, and after haptoglobin may provide a second line of defense against the toxicity of extracellular hemoglobin (Hb). In this series of experiments, the hypothesis that Hpx protects neurons from Hb neurotoxicity was evaluated in murine primary cultures containing neurons and glial cells. Contrary to hypothesis, Hpx increased neuronal loss due to micromolar concentrations of Hb by 4‐ to 12‐fold, as measured by LDH release assay; conversely, the neurotoxicity of hemin was completely prevented. The endogenous fluorescence of Hpx was quenched by Hb, consistent with transfer of Hb‐bound heme to Hpx. This was associated with precipitation of globin chains, as detected by immunostaining and fluorescent Hb labeling. A portion of this precipitate attached firmly to cells and could not be removed by multiple washes. Concomitant treatment with haptoglobin (Hp) prevented globin precipitation and most of the increase in neuronal loss. Hpx weakly attenuated the increase in culture non‐heme iron produced by Hb treatment, quantified by ferrozine assay. However, Hb‐Hpx toxicity was iron‐dependent, and was blocked by deferoxamine and ferrostatin‐1. Up‐regulation of cell ferritin expression, a primary cell defense against Hb toxicity, was not observed on western blots of culture lysates that had been concomitantly treated with Hpx. These results suggest that Hpx destabilizes Hb in the absence of haptoglobin, leading to globin precipitation and exacerbation of iron‐dependent oxidative cell injury. Combined therapy with hemopexin plus haptoglobin may be preferable to hemopexin alone after CNS hemorrhage.

  相似文献   
18.
The exit (E) site has been implicated in several ribosomal activities, including translocation, decoding, and maintenance of the translational reading frame. Here, we target the 30S subunit E site by introducing a deletion in rpsG that truncates the β-hairpin of ribosomal protein S7. This mutation (S7ΔR77–Y84) increases both −1 and +1 frameshifting but does not increase miscoding, providing evidence that the 30S E site plays a specific role in frame maintenance. Mutation S7ΔR77–Y84 also stimulates +1 programmed frameshifting during prfB′-lacZ translation in many synthetic contexts. However, no effect is seen when the E codon of the frameshift site corresponds to those found in nature, suggesting that E-tRNA release does not normally limit the rate of prfB frameshifting. Ribosomes containing S7ΔR77–Y84 exhibit an elevated rate of spontaneous reverse translocation and an increased K1/2 for E-tRNA. These effects are of similar magnitude, suggesting that both result from destabilization of E-tRNA. Finally, this mutation of the 30S E site does not inhibit EF-G-dependent translocation, consistent with a primary role for the 50S E site in the mechanism.  相似文献   
19.
20.
Curcumin modulates free radical quenching in myocardial ischaemia in rats   总被引:1,自引:0,他引:1  
This study was designed to investigate the protective effect of curcumin (CUR) against isoprenaline induced myocardial ischaemia in rat myocardium. The effect of single oral dose of curcumin (15 mg kg(-1)), administered 30 min before and/or after the onset of ischaemia, was investigated by assessing oxidative stress related biochemical parameters in rat myocardium. Curcumin pre and post-treatment (PPT) was shown to decrease the levels of xanthine oxidase, superoxide anion, lipid peroxides (LPs) and myeloperoxidase while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) activities were significantly increased after curcumin PPT. Histopathological and transmission electron microscopical studies also confirmed the severe myocardial damage occurring as a consequence of isoprenaline induced ischaemia and they also showed the significant improvement effected by curcumin PPT. These findings provided evidence that curcumin was found to protect rat myocardium against ischaemic insult and the protective effect could be attributed to its antioxidant properties as well as its inhibitory effects on xanthine dehydrogenase/xanthine oxidase (XD/XO) conversion and resultant superoxide anion production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号