首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   17篇
  国内免费   1篇
  235篇
  2023年   4篇
  2022年   14篇
  2021年   22篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   21篇
  2015年   14篇
  2014年   22篇
  2013年   12篇
  2012年   14篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1985年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
221.
HIV fusion is mediated by a conformational transition in which the C-terminal region (HR2) of gp41 interacts with the N-terminal region (HR1) to form a six-helix bundle. Peptides derived from the HR1 form a well-characterized, trimeric coiled-coil bundle in the presence of HR2 peptides, but there is little structural information on the isolated HR1 trimer. Using protein design, we have designed synthetic HR1 peptides that form soluble, thermostable HR1 trimers. In vitro binding of HR2 peptides to the engineered trimer suggests that the design strategy has not significantly impacted the ability to form the six-helix bundle. The peptides have enhanced antiviral activity compared to wild type, with up to 30-fold greater potency against certain viral isolates. In vitro passaging was used to generate HR1-resistant virus and the observed resistance mutations map to the HR2 region of gp41, demonstrating that the peptides block the fusion process by binding to the viral HR2 domain. Interestingly, the activity of the HR2 fusion inhibitor, enfuvirtide (ENF), against these resistant viruses is maintained or improved up to fivefold. The 1.5 A crystal structure of one of these designs has been determined, and we show that the isolated HR1 is very similar to the conformation of the HR1 in the six-helix bundle. These results provide an initial model of the pre-fusogenic state, are attractive starting points for identifying novel fusion inhibitors, and offer new opportunities for developing HIV therapeutics based on HR1 peptides.  相似文献   
222.
223.
A mutation was induced in Aspergillus niger wild strain using ethidium bromide resulting in enhanced expression of citric acid by three folds and 112.42 mg/mL citric acid was produced under optimum conditions with 121.84 mg/mL of sugar utilization. Dendograms of 18S rDNA and citrate synthase from different fungi including sample strains were made to assess homology among different fungi and to study the correlation of citrate synthase gene with evolution of fungi. Subsequent comparative sequence analysis revealed strangeness between the citrate synthase and 18S rDNA phylogenetic trees. Furthermore, the citrate synthase movement suggests that the use of traditional marker molecule of 18S rDNA gives misleading information about the evolution of citrate synthase in different fungi as it has shown that citrate synthase gene transferred independently among different fungi having no evolutionary relationships. Random amplified polymorphic DNA (RAPD-PCR) analysis was also employed to study genetic variation between wild and mutant strains of A. niger and only 71.43% similarity was found between both the genomes. Keeping in view the importance of citric acid as a necessary constituent of various food preparations, synthetic biodegradable detergents and pharmaceuticals the enhanced production of citric acid by mutant derivative might provide significant boost in commercial scale viability of this useful product.

Abbreviations

CS - Citrate synthase, CA - Citric acid, RAPD - Random amplified polymorphic DNA, TAF - Total amplified fragments, PAF - Polymorphic amplified fragments, CAF - Common amplified fragments.  相似文献   
224.
The effects of foliar application of different concentrations of amino acids (tyrosine and phenylalanine) and phenolic acids (trans-cinnamic acid, benzoic acid and salicylic acid) on growth, pigment content, hormones levels and essential oil content of Ammi visnaga L were carried out during two successive seasons. It is clear that foliar application of either amino acids or phenolics significantly promoted the growth parameters in terms of shoot height, fresh and dry biomass, number of branches and number of umbels per plant. The increment of growth parameter was associated with elevated levels of growth promoters (IAA, GA3, total cytokinins) and low level of ABA. The greatest increase in the previously mentioned parameters was measured in plants exposed to different concentrations of phenols particularly in benzoic acid-treated plants. Such effect was concentration dependent. All treatments led to significant increments in yield seeds and oil content. Moreover, gas liquid chromatographic analysis revealed that the main identified components of essential oil were 2,2-dimethyl butanoic acid, isobutyl isobutyrate, α-isophorone, thymol, fenchyl acetate and linalool. Phenolics and amino acid treatments resulted in qualitative differences in these components of essential oil.  相似文献   
225.
Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.  相似文献   
226.

Background

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, thereby compromising p53 activity. Therefore, lymphoma is a suitable model for studying the therapeutic value of disrupting the HDM2-p53 interaction by small-molecule inhibitors (SMIs). HDM2 have been developed and are under various stages of preclinical and clinical investigation. Previously, we examined the anti-lymphoma activity of MI-319, the laboratory grade of a new class of HDM2 SMI, the spiro-oxindole, in follicular lymphoma. Since then, MI-219, the clinical grade has become readily available. This study further examines the preclinical effects and mechanisms of MI-219 in a panel of human lymphoma cell lines as well as a cohort of patient-derived B-lymphcytes for its potential clinical use.

Results

Preclinical assessment of MI-219 was evaluated by means of an in vitro and ex vivo approach and compared to Nutlin-3, the gold standard. Characterization of p53 activity and stability were assessed by quantitative PCR, Western blot, and immunoprecipitation. Biological outcome was measured using Trypan blue exclusion assay, Annexin V/PI, PARP and caspase-3 cleavage. Surprisingly, the overall biological effects of Nutlin-3 were more delayed (48 h) while MI-219 triggered an earlier response (12-24 h), predominantly in the form of apoptotic cell death. Using a cell free autoubiquitination assay, neither agent interfered with HDM2 E3 ligase function. MI-219 was more effective in upregulating wt-p53 stabilization compared to Nutlin-3. MI-219, but not Nutlin-3, enhanced the autoubiquitination and degradation of HDM2.

Conclusions

Our data reveals unexpected differences between MI-219 and the well-studied Nutlin-3 in lymphoma cell lines and patient samples. We suggest a novel mechanism for MI-219 that alters the functional activity of HDM2 through enhanced autoubiquitination and degradation. Additionally, this mechanism appears to correspond to biological outcome. Our results provide evidence that different classes of HDM2 SMIs elicit molecular events that extend beyond HDM2-p53 dissociation which may be of biological and potentially therapeutic importance.  相似文献   
227.
228.
229.
COVID-19 is a rapidly emerging infectious disease caused by the SARS-CoV-2 virus currently spreading throughout the world. To date, there are no specific drugs formulated for it, and researchers around the globe are racing against the clock to investigate potential drug candidates. The repurposing of existing drugs in the market represents an effective and economical strategy commonly utilized in such investigations. In this study, we used a multiple-sequence alignment approach for preliminary screening of commercially-available drugs on SARS-CoV sequences from the Kingdom of Saudi Arabia (KSA) isolates. The viral genomic sequences from KSA isolates were obtained from GISAID, an open access repository housing a wide variety of epidemic and pandemic virus data. A phylogenetic analysis of the present 164 sequences from the KSA provinces was carried out using the MEGA X software, which displayed high similarity (around 98%). The sequence was then analyzed using the VIGOR4 genome annotator to construct its genomic structure. Screening of existing drugs was carried out by mining data based on viral gene expressions from the ZINC database. A total of 73 hits were generated. The viral target orthologs were mapped to the SARS-CoV-2 KSA isolate sequence by multiple sequence alignment using CLUSTAL OMEGA, and a list of 29 orthologs with purchasable drug information was generated. The results showed that the SARS CoV replicase polyprotein 1a had the highest sequence similarity at 79.91%. Through ZINC data mining, tanshinones were found to have high binding affinities to this target. These compounds could be ideal candidates for SARS-CoV-2. Other matches ranged between 27 and 52%. The results of this study would serve as a significant endeavor towards drug discovery that would increase our chances of finding an effective treatment or prevention against COVID19.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号