首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   10篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   10篇
  2014年   8篇
  2013年   7篇
  2012年   9篇
  2011年   10篇
  2010年   2篇
  2009年   5篇
  2008年   11篇
  2007年   9篇
  2006年   9篇
  2005年   7篇
  2004年   1篇
  2003年   5篇
  2002年   7篇
  2000年   4篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
121.
Alu elements sharing sequence characteristics of the old subfamilies are thought to currently be retrotranspositionally inactive. We analyzed one of these old subfamilies of Alu elements, Sx, for sequence conservation relative to the consensus and the length of the A-tail as parameters to define the presence of potential Alu Sx source genes in the human genome. Sequence identity to the left half or the right half of the Alu Sx consensus sequence was evaluated for 4424 complete elements obtained from the human genome draft sequence. A small subset of Alu Sx left halves were found to be more conserved than any of the Alu Sx right halves. Selection for promoter function in active elements may explain the slightly higher conservation of the left half. In order to determine whether this sequence identity was the result of recent activity, or simply sequence conservation for older elements, PCR amplification of some of the loci containing Sx elements with conserved left/right halves from different primate genomes was carried out. Several of these Sx Alus were found to have amplified at a later evolutionary period (<35 mya) than expected based on previous studies of Sx elements. Analysis of A-tail length, a feature correlated with current retroposition activity, varied between Alu Sx element loci in different primates, where the length increased in specific Alu elements in the human genome. The presence of few conserved Alu Sx elements and the dynamic expansion/contraction of the A-tail suggests that some of these older subfamilies may still be active at very low levels or in a few individuals. Present address: (Claudina Alemán Stevenson) Laboratory of Cell Biology, NCI/NIH Building 37/Rm 1A09, Bethesda, MD 20892, USA  相似文献   
122.
In 1991 the Ethiopian government employed ethnic pluralism as an organizing principle, creating multiple ethnic-based territorial units with a right of secession provision. Ethiopians are watching this experiment with considerable apprehension. This paper: (1) provides a concise historical background of ethnic relations in Ethiopia, (2) examines the type of ethnic federal state established in Ethiopia, and (3) points out some problems encountered with ethnicity as an organizing principle and attempts a preliminary assessment of the ethnic-based federal experiment. The sources of data for this paper include public documents, fieldwork, and interviews with 30 knowledgeable Ethiopians in Addis Ababa. I spent several months during 2000–2002 observing political developments in the country as they pertain to ethnic federalism. Within Africa, a nation-state fully acknowledging and based on ethnic pluralism is unique. Thus far, the Ethiopian federation appears to have undercut the drive for secession by largely removing its rallying cause, manifest ethnic oppression. Nonetheless, the fact that the ruling group comes predominantly from a small ethnic group has raised serious protest from other ethnic groups, larger and smaller. Its use of democratic centralism has also undermined effective decentralization and democratization. Ethnic pluralism as an organizing principle underpinning the federal government in Ethiopia is a fragile and perilous experiment.  相似文献   
123.
The RPAR peptide, a prototype C‐end Rule (CendR) sequence that binds to neuropilin‐1 (NRP‐1), has potential therapeutic uses as internalization trigger in anticancer nanodevices. Recently, the functionalization of gold nanoparticles with CendR peptides has been proved to be a successful strategy to target the NRP‐1 receptor in prostate cancer cells. In this work, we investigate the influence of two gold surface facets, (100) and (111), on the conformational preferences of RPAR using molecular dynamics simulations. Both clustering and conformational analyses revealed that the peptide backbone becomes very rigid upon adsorption onto gold, which is a very fast and favored process, the only flexibility being attributed to the side chains of the two Arg residues. Thus, the different components of RPAR tend to adopt an elongated shape, which is characterized by the pseudo‐extended conformation of both the backbone and the Arg side chains. This conformation is very different from the already known bioactive conformation, indicating that RPAR is drastically affected by the substrate. Interestingly, the preferred conformations of the peptide adsorbed onto gold facets are not stabilized by salt bridges and/or specific intramolecular hydrogen bonds, which represent an important difference with respect to the conformations found in other environments (e.g. the peptide in solution and interacting with NRP‐1 receptor). However, the conformational changes induced by the substrate are not detrimental for the use of gold nanoparticles as appropriate vehicles for the transport and targeted delivery of the RPAR. Thus, once their high affinity for the NRP‐1 receptor induces the targeted delivery of the elongated peptide molecules from the gold nanoparticles, the lack of intramolecular interactions facilitates their evolution towards the bioactive conformation, increasing the therapeutic efficacy of the peptide.  相似文献   
124.
125.
Abstract

Brucella melitensis is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the B. melitensis porin Omp2a is built using the RaptorX threading method. This is a 16-stranded β-barrel with an α-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the β-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterials.  相似文献   
126.
p120 catenin is a scaffold protein that interacts with cadherin cytoplasmic domain and acts as a crucial component of the signalling that regulates the cycle of adherens junction formation and disassembly. Here, we review the nature of stimuli that modulate p120ctn function and are translated as serine/threonine and tyrosine phosphorylation events at this multisite substrate for a variety of protein kinases. We also highlight recent findings that tentatively link phosphorylation of p120ctn to its role as a signal integrator capable to influence the state of the cadherin adhesive bond, the cytoskeleton and cell motility.  相似文献   
127.
“Dermo” disease caused by the protozoan parasite Perkinsus marinus (Perkinsozoa) is one of the main obstacles to the restoration of oyster populations in the USA. Perkinsus spp. are also a concern worldwide because there are limited approaches to intervention against the disease. Based on the phylogenetic affinity between the Perkinsozoa and Apicomplexa, we exposed Perkinsus trophozoites to the Medicines for Malaria Venture Malaria Box, an open access compound library comprised of 200 drug-like and 200 probe-like compounds that are highly active against the erythrocyte stage of Plasmodium falciparum. Using a final concentration of 20 µM, we found that 4 days after exposure 46% of the compounds were active against P. marinus trophozoites. Six compounds with IC50 in the µM range were used to compare the degree of susceptibility in vitro of eight P. marinus strains from the USA and five Perkinsus species from around the world. The three compounds, MMV666021, MMV665807 and MMV666102, displayed a uniform effect across Perkinsus strains and species. Both Perkinsus marinus isolates and Perkinsus spp. presented different patterns of response to the panel of compounds tested, supporting the concept of strain/species variability. Here, we expanded the range of compounds available for inhibiting Perkinsus proliferation in vitro and characterized Perkinsus phenotypes based on their resistance to six compounds. We also discuss the implications of these findings in the context of oyster management. The Perkinsus system offers the potential for investigating the mechanism of action of the compounds of interest.  相似文献   
128.
We present a simple and effective high‐throughput experimental platform for simultaneous and continuous monitoring of water relations in the soil–plant–atmosphere continuum of numerous plants under dynamic environmental conditions. This system provides a simultaneously measured, detailed physiological response profile for each plant in the array, over time periods ranging from a few minutes to the entire growing season, under normal, stress and recovery conditions and at any phenological stage. Three probes for each pot in the array and a specially designed algorithm enable detailed water‐relations characterization of whole‐plant transpiration, biomass gain, stomatal conductance and root flux. They also enable quantitative calculation of the whole plant water‐use efficiency and relative water content at high resolution under dynamic soil and atmospheric conditions. The system has no moving parts and can fit into many growing environments. A screening of 65 introgression lines of a wild tomato species (Solanum pennellii) crossed with cultivated tomato (S. lycopersicum), using our system and conventional gas‐exchange tools, confirmed the accuracy of the system as well as its diagnostic capabilities. The use of this high‐throughput diagnostic screening method is discussed in light of the gaps in our understanding of the genetic regulation of whole‐plant performance, particularly under abiotic stress.  相似文献   
129.
Salmonella uses type III secretion systems (TTSS) to deliver pathogenic proteins into the host cells. These translocated effectors induce bacterial internalization and intracellular proliferation by targeting important cellular processes that are conserved among eukaryotes. Here, we assessed the feasibility of performing a genetic screen in yeast to identify novel Salmonella effectors, by searching for genes that produce toxicity when expressed in this model system. We identified several known TTSS-translocated effectors and found that two of them, SteC and SseF, from Salmonella enterica serovar Typhimurium, interfere with cytoskeletal dynamics as they do in mammalian cells. We also identified 11 genes of unknown function (seven from S . Typhi and four from S . Typhimurium) that display features commonly showed by effector proteins, such as a (G+C) content lower than the average for the chromosome, suggesting their acquisition by horizontal transfer processes. Five of these proteins are highly conserved only among Salmonella serovars, whereas the other six are also conserved in other pathogenic or opportunistic enterobacteria. Moreover, we identified other proteins that share specific activity domains with either translocated or bacterial-confined proteins known to be involved in pathogenesis, which might also act as virulence proteins.  相似文献   
130.
The evolution of extravagant sexual traits by sensory exploitation occurs if males incidentally evolve features that stimulate females owing to a pre‐existing environmental response that arose in the context of natural selection. The sensory exploitation process is thus expected to leave a specific genetic imprint, a pleiotropic control of the original environmental response and the novel sexual response in females. However, females may be subsequently selected to improve their discrimination of environmental and sexual stimuli. Accordingly, responses may have diverged and the original genetic architecture may have been modified. These possibilities may be considered by studying the genetic architecture of responses to male signals and to the environmental stimuli that were purportedly ‘exploited’ by those signals. However, no previous study has addressed the genetic control of sensory exploitation. We investigated this question in an acoustic pyralid moth, Achroia grisella, in which a male ultrasonic song attracts females and perception of ultrasound likely arose in the context of detecting predatory bats. We examined the genetic architecture of female response to bat echolocation signals and to male song via a cartographic study of quantitative trait loci (QTL) influencing these receiver traits. We found several QTL for both traits, but none of them were colocalized on the same chromosomes. These results indicate that – to the extent to which male A. grisella song originated by the process of sensory exploitation – some modification of the female responses occurred since the origin of the male signal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号