首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   14篇
  国内免费   1篇
  181篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   11篇
  2014年   7篇
  2013年   11篇
  2012年   16篇
  2011年   15篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   13篇
  2006年   10篇
  2005年   7篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1998年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1953年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
21.
Vancomycin-resistant enterococci (VRE) in Europe are thought to have emerged partly due to the use of the glycopeptide avoparcin in animal husbandry. We compared the occurrence of VRE in geographical regions of Europe in which until 1997 large amounts of avoparcin were used (Spain, United Kingdom, and Denmark) with the occurrence of VRE in Sweden, where avoparcin was banned in 1986. We also studied the relatedness between VRE strains from different regions and habitats. In total, 2,580 samples were collected from humans, animals, and the environment (soil, sewage, recipient water). VRE resistant to 20 microg/ml vancomycin were identified in 8.2% of the samples and were found most frequently in raw and treated urban sewage samples (means, 71% and 36% of the samples, respectively), pig manure (17%), and hospital sewage (16%). The proportions of VRE-positive sewage samples were similar in Sweden, Spain, and the United Kingdom, whereas pig feces and manure were more often positive in Spain than in Sweden (30% versus 1%). Most VRE were Enterococcus faecium carrying vanA, and computerized biochemical phenotyping of the isolates of different ecological origins showed a high degree of polyclonality. In conclusion, it seems that animal-associated VRE probably reflect the former use of avoparcin in animal production, whereas VRE in human-associated samples may be a result of antibiotic use in hospitals. Since there seems to be a reservoir of the resistance genes in all countries studied, precautions must be taken to limit the use of antibiotics and antibiotic-like feed additives.  相似文献   
22.
Carnitine is a zwitterion essential for the beta-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (Km 20 microM), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.  相似文献   
23.
During a settlement decision, the presence of conspecifics is crucial to species subject to Allee effects, for which the number of founders affects the subsequent growth of the colony. Marking the area (physically or chemically) conveys information about the number of conspecifics present in a new patch. Here, we study how an individual affinity for the marker affects the dynamics of a foundation process. A generic population model is presented, in which marking and affinity for the marker are at stake. Our results show that population size thresholds can appear, below which settlement is not possible. This model is then used to study the dynamics of migration and aggregation in a set of interconnected populations. We show that affinity for the marker can induce asymmetries in the population distribution. Anelosimus eximius is a social spider subject to Allee effects, for which silk potentially acts as a marker. We test our predictions with field experiments involving two populations of A. eximius in a Y-shaped setup. The agreement between our experimental and theoretical results strongly supports the validity of the model. This allows us to use the model to estimate a realistic set of parameters of biological significance to this social spider.  相似文献   
24.
Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.  相似文献   
25.
The study was aimed at identifying the soil properties responsible for maize yield decline on eroded soils and at quantifying their relationship with yield. Topsoil was artificially removed to incremental depths of 0, 5, 10, 15 and 20 cm to simulate various degrees of erosion. Maize growth and yield were monitored on the plots and soil physical and chemical properties were determined after two years (4 seasons) of cultivation. Soil pH was significantly higher on the control plot and decreased with increased depth of topsoil removal. Bulk density (BD) increased with depth of topsoil removal from a mean value of 1.38 g cm−3 under control to 1.55 g cm−3 at 20 cm depth of removal, while cone index of penetrometer resistance (CI) correspondingly increased from 1.09 g cm−2 to 1.37 g cm−2. Maize yield significantly decreased in the first year from 3.2 t ha−1 on the control plot to 0.12 t ha−1 where 20 cm of topsoil was removed and correspondingly from 1.85 to 0.09 t ha−1 in the second year of cropping. Maize yield decreased exponentially with increase in depth of topsoil removal (r 2=0.99, P<0.01) with an average of 55% yield loss on the removal of just 5 cm topsoil. Soil organic carbon (SOC), BD, CI, field capacity (FC), pH and exchangeable Mg2+ were significantly correlated to maize yield parameters. However, factor analysis showed that the combination of SOC and exchangeable Mg2+ with soil physical properties (BD, FC, CI and depth of topsoil removal) explained 99% of variation in maize grain yield. The need for conservation farm practices is recommended on the soil to prevent soil degradation. Section Editor: L. Wade  相似文献   
26.
In this study, an efficient procedure was established for successful induction of tetraploid Arachis paraguariensis by treating diploid explants with colchicine. Quartered-seed, callus and shoot-tips were treated with colchicine at concentrations of 0.05, 0.1, 0.2 and 0.5?% (w/v) for 4, 8, 16, 20 and 24?h before they were transferred unto modified Murashige and Skoog medium for either callus induction or shoot regeneration. Results showed that quartered-seed displayed the highest frequency of in vitro plantlet regeneration and tetraploid induction, as well as the lowest mortality rate. Flow cytometric analysis also confirmed that the induced tetraploids from quartered-seed were true-to-type. The 0.5?% colchicine treatment for 4 to 8?h gave the best results with 39 and 43?% of the explants yielding tetraploid plants, respectively. Two?months following transfer to ex vitro environment, morphological and growth characteristics of the induced tetraploids were measured. Overall, increasing the ploidy level from 2× to 4× resulted in fewer stomata but more trichomes per unit leaf area. Tetraploid plants obtained in this study should expand the genetic base of Arachis, and can also be used in overcoming the existing hybridization barriers that may be due to ploidy differences within the genus Arachis.  相似文献   
27.
Highlights? The structure of ketamine-bound GLIC reveals an anesthetic binding site ? The study provides compelling evidence for allosteric inhibition by anesthetics ? Ketamine inhibition on GLIC is similar to competitive antagonist action on nAChRs ? Ketamine directly acts on pLGICs in addition to NMDA receptors  相似文献   
28.
Abstract

Fungi of the Trichoderma species are valued industrial enzymes in support of the ‘zero-waste’ technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116–His205–Glu249 and Ser382–Arg124–Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (?6.0 ? kcal mol?1) was the most favourable followed by lignin (?5.6 ? kcal mol?1) and cellulose (?4.4 ? kcal mol?1). Exocellulase, contrarily, bonded favorably with lignin (?8.7 ? kcal mol?1), closely followed by cellulose (?8.5 ? kcal mol?1) and hemicellulose (?8.4 ? kcal mol?1). MDs simulations showed that interactions of complexes, endocellulase–hemicellulose and the exocellulase–cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production.

Communicated by Ramaswamy H. Sarma  相似文献   
29.
Neurons undergo several morphological changes as a part of normal neuron maturation process. Alzheimer disease is associated with increased neuroproliferation and impaired neuronal maturation. In this study, we demonstrated that Gas7b (growth arrest specific protein 7b) expression in a neuronal cell line, Neuro 2A, induces cell maturation by facilitating formation of dendrite-like processes and/or filopodia projections and that Gas7b co-localizes with neurite microtubules. Molecular analysis was performed to evaluate whether Gas7b associates with actin filaments and microtubules, and the data revealed two novel roles of Gas7b in neurite outgrowth: we showed that Gas7b enhances bundling of several microtubule filaments and connects microtubules with actin filaments. These results suggest that Gas7b governs neural cell morphogenesis by enhancing the coordination between actin filaments and microtubules. We conclude that lower neuronal Gas7b levels may impact Alzheimer disease progression.  相似文献   
30.
Amino acid biosynthesis and central carbon metabolism of Pichia pastoris were studied using biosynthetically directed fractional (13)C labeling. Cells were grown aerobically in a chemostat culture fed at two dilution rates (0.05 h(-1), 0.16 h(-1)) with glycerol as the sole carbon source. For investigation of amino acid biosynthesis and comparison with glycerol cultivations, cells were also grown at 0.16 h(-1) on glucose. Our results show that, firstly, amino acids are synthesized as in Saccharomyces cerevisiae. Secondly, biosynthesis of mitochondrial pyruvate via the malic enzyme is not registered for any of the three cultivations. Thirdly, transfer of oxaloacetate across the mitochondrial membrane appears bidirectional, with a smaller fraction of cytosolic oxaloacetate stemming from the mitochondrial pool at the higher dilution rate of 0.16 h(-1) (for glucose or glycerol cultivation) when compared to the glycerol cultivation at 0.05 h(-1). Fourthly, the fraction of anaplerotic synthesis of oxaloacetate increases from 33% to 48% when increasing the dilution rate for glycerol supply, while 38% is detected when glucose is fed. Finally, the cultivation on glucose also allowed qualitative comparison with the flux ratio profile previously published for Pichia stipitis and S. cerevisiae grown on glucose in a chemostat culture at a dilution rate of 0.1 h(-1). This provided a first indication that regulation of central carbon metabolism in P. pastoris and S. cerevisiae might be more similar to each other than to P. stipitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号