首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   10篇
  国内免费   1篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   11篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   11篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  1999年   3篇
  1996年   1篇
  1995年   2篇
  1988年   1篇
  1984年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1933年   1篇
  1907年   3篇
排序方式: 共有162条查询结果,搜索用时 62 毫秒
71.
The EI T or haemolysin, product of hlyA, is exported from Vibrio cholerae as a Mr 80,000 protein which can be subsequently cleaved to give two proteins of Mr 65,000 and 15,000. Nucleotide sequence analysis has demonstrated that hlyA encodes a protein of Mr 82,250 with a potential 18-amino-acid signal sequence. The non-haemolytic classical strain 569B has been shown to have a structural gene defect rather than a defect in secretion. By non-reciprocal recombination it was possible to transfer this defect onto a plasmid and show that a truncated hlyA product of Mr 27,000 is made in Escherichia coli K-12 minicells. Nucleotide sequence analysis demonstrates an 11-base-pair deletion which would result in a Mr 26,940 protein probably loosely associated with the membrane.  相似文献   
72.
Structural characterization of membrane proteins is hampered by their instability in detergent solutions. We modified here a G protein‐coupled receptor, the BLT1 receptor of leukotriene B4, to stabilize it in vitro. For this, we introduced a metal‐binding site connecting the third and sixth transmembrane domains of the receptor. This modification was intended to restrain the activation‐associated relative movement of these helices that results in a less stable packing in the isolated receptor. The modified receptor binds its agonist with low‐affinity and can no longer trigger G protein activation, indicating that it is stabilized in its ground state conformation. Of importance, the modified BLT1 receptor displays an increased temperature‐, detergent‐, and time‐dependent stability compared with the wild‐type receptor. These data indicate that stabilizing the ground state of this GPCR by limiting the activation‐associated movements of the transmembrane helices is a way to increase its stability in detergent solutions; this could represent a forward step on the way of its crystallization.  相似文献   
73.
Parasitoids that oviposit in a concealed host inside a plant part need to be able to find both the plant and the host. Egg parasitoids of fruit‐infesting Tephritidae need to assess the oviposition site based both on the host egg and the infested fruit. Infestation by Tephritidae fruit flies threatens fruit and vegetable production. Management methods have been implemented including biological control, using Fopius arisanus Sonan (Hymenoptera: Braconidae). The parasitism by F. arisanus in three Tephritidae flies in vegetable fruits was investigated. Laboratory assays were conducted to assess the parasitoid's preference and survival. Zucchini, sweet pepper, and tomato were artificially infested with eggs of Bactrocera dorsalis Hendel, Ceratitis capitata Wiedemann, and Ceratitis cosyra Walker (all Diptera: Tephritidae), then exposed to mated naïve F. arisanus females in a 20:1 egg:parasitoid ratio. Parasitoid behavioral activities (resting, antennating, probing, ovipositing) were observed on the infested fruits. Parasitism rate was determined by dissection of fruit fly eggs under a stereomicroscope. Behavioral activities of F. arisanus differed between all the fruits when infested with B. dorsalis or C. cosyra eggs but differed only between some of the fruits when infested with C. capitata. Fopius arisanus preferred B. dorsalis over C. capitata and C. cosyra, with a parasitism rate 2× higher on B. dorsalis compared to the Ceratitis species. Preference for fruits was dependent on the infesting fruit fly. The emergence of F. arisanus was higher with B. dorsalis than with Ceratitis spp. Although B. dorsalis completed its development earlier than Ceratitis spp., host fly species did not affect the developmental time of F. arisanus. We discuss the significance of F. arisanus preference in relation to naturally occurring Tephritidae infestations. We also discuss whether some fruits might constitute a refuge for Tephritidae flies and whether this will affect the current biological control efforts against B. dorsalis.  相似文献   
74.
75.
76.
Long QT Syndrome (LQTS) is a cardiac disease characterized by a prolonged QT interval on a surface electrocardiogram (ECG) and by clinical symptoms such as seizures, syncope, and cardiac sudden death. At present, causal mutations of LQTS have been identified in five cardiac ion-channel genes. Because a causal mutation is usually unique to a specific family and can be located in any region of any of these five genes, a mutation analysis effort may require screening of the complete coding regions of each of these genes. The causative nature of a detected mutation can then be determined either by family history or by functional studies, such as the electrophysiological signature of the mutation. Here we describe a mutation analysis of an LQTS patient who carries two heterozygous missense mutations in two different LQTS genes. The first mutation identified, A572D in SCN5A, was not linked with clinical LQTS features in the two other mutation carriers in the family; neither was it identified in 90 healthy controls. Therefore, this mutation most likely has either a mild effect on cardiac ion-channel function or represents a very rare polymorphism. The second mutation, V254M in KCNQ1, co-segregated with higher QT intervals and symptoms in other family members, and was previously reported in another LQTS family. Because the clinical LQTS symptoms are most pronounced in the proband, a combined effect of both mutations cannot be excluded, although no functional data are available to support such an hypothesis. We conclude that, for newly presented LQTS cases, a mutation analysis strategy should routinely screen the complete coding region of all LQTS genes, followed by an evaluation of the identified mutation(s) in conjunction with family or functional data.  相似文献   
77.
Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants) causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis.  相似文献   
78.
Two regulatory signals play major roles in digit patterning during vertebrate limb development, the SHH morphogen and the BMP antagonist Gremlin1. Their dynamic expression in limb buds is controlled by distant cis-regulatory elements embedded in unrelated neighboring genes, which has confused identification of the primary cause of different types of congenital limb malformations affecting mice and humans. Comparative and functional genomics have uncovered the large and complex chromosomal landscapes that control Shh and Gremlin1 expression, identified the molecular cause of the congenital malformations and provided insights into limb evolution. While most of the transacting factors remain unknown, Hoxd proteins have been shown to bind to the far upstream Shh cis-regulatory elements and activate their expression in limb buds.  相似文献   
79.
Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3°C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.Soil microbial communities are responsible for the cycling of carbon (C) and nutrients in ecosystems, and their activities are regulated by biotic and abiotic factors such as the quantity and quality of litter inputs, temperature, and moisture. Atmospheric and climatic changes will impact both abiotic and biotic drivers in ecosystems and the response of ecosystems to these changes. Feedbacks from ecosystem to the atmosphere may also be regulated by soil microbial communities (3). Although microbial communities regulate important ecosystem processes, it is often unclear how the abundance and composition of microbial communities correlate with climatic perturbations and interact to effect ecosystem processes. As such, much of the ecosystem climate change research conducted to date has focused on macroscale responses to climatic change such as changes in plant growth (43, 44), plant community composition (2, 37), and coarse scale soil processes (14, 18, 21, 26), many of which may also indirectly interact to effect microbial processes. Studies that have addressed the role of microbial communities and processes have most often targeted gross parameters, such as microbial biomass, enzymatic activity, or basic microbial community profiles in response to single climate change factors (22, 28, 29, 33, 61, 63).Climate change factors such as atmospheric CO2 concentrations, warming, and altered precipitation regimes can potentially have both direct and indirect impacts on soil microbial communities. However, the direction and magnitude of these responses is uncertain. For example, the response of soil microbial communities to changes in atmospheric CO2 concentrations can be positive or negative, and consistent overall trends between sites and studies have not been observed (1, 28, 34-36). Further, depending on what limits ecosystem productivity, precipitation and soil moisture changes may increase or decrease the ratio of bacteria and fungi, as well as shift their community composition (8, 50, 58). Increasing temperatures can increase in microbial activity, processing, and turnover, causing the microbial community to shift in favor of representatives adapted to higher temperatures and faster growth rates (7, 46, 60, 64, 65). Atmospheric and climatic changes are happening in concert with one another so that ecosystems are experiencing higher levels of atmospheric CO2, warming, and changes in precipitation regimes simultaneously. Although the many single factor climate change studies described above have enabled a better understanding of how microbial communities may respond to any one factor, understanding how multiple climate change factors interact with each other to influence microbial community responses is poorly understood. For example, elevated atmospheric [CO2] and precipitation changes might increase soil moisture in an ecosystem, but this increase may be counteracted by warming (10). Similarly, warming may increase microbial activity in an ecosystem, but this increase may be eliminated if changes in precipitation lead to a drier soil condition or reduced litter quantity, quality, and turnover. Such interactive effects of climate factors in a multifactorial context have been less commonly studied even in plant communities (45), and detailed studies are rarer still in soil microbial communities (25). Clearly, understanding how microbial communities will respond to these atmospheric and climate change drivers is important to make accurate predications of how ecosystems may respond to future climate scenarios.To address how multiple climate change drivers will interact to shape soil microbial communities, we took advantage of a multifactor climatic change experiment that manipulated atmospheric CO2 (+300 ppm, ambient), warming (+3°C, ambient) and precipitation (wet and dry) in a constructed old-field ecosystem that had been ongoing for 3.5 years at the time of sampling. Previous work on this project has demonstrated direct and interactive effects of the treatments on plant community composition and biomass (15, 30), soil respiration (56), microbial activity (30), nitrogen fixation (21), and soil carbon stocks (20). These results led us to investigations of how the soil bacterial and fungal communities, important regulators of some of these processes, were responding using culture-independent molecular approaches. Our research addresses two overarching questions. (i) Do climatic change factors and their interactions alter bacterial and fungal abundance and diversity? (ii) Do climatic change factors and their interactions alter bacterial or fungal community composition?  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号