首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34375篇
  免费   16136篇
  国内免费   421篇
  2023年   83篇
  2022年   233篇
  2021年   776篇
  2020年   2423篇
  2019年   3966篇
  2018年   4102篇
  2017年   4312篇
  2016年   4433篇
  2015年   4528篇
  2014年   4225篇
  2013年   4743篇
  2012年   2508篇
  2011年   2168篇
  2010年   3450篇
  2009年   2092篇
  2008年   1118篇
  2007年   635篇
  2006年   611篇
  2005年   606篇
  2004年   531篇
  2003年   490篇
  2002年   470篇
  2001年   417篇
  2000年   370篇
  1999年   267篇
  1998年   94篇
  1997年   87篇
  1996年   85篇
  1995年   70篇
  1994年   72篇
  1993年   55篇
  1992年   98篇
  1991年   81篇
  1990年   79篇
  1989年   65篇
  1988年   56篇
  1987年   70篇
  1986年   47篇
  1985年   43篇
  1984年   37篇
  1983年   22篇
  1982年   27篇
  1980年   23篇
  1979年   28篇
  1978年   20篇
  1977年   23篇
  1975年   18篇
  1974年   16篇
  1973年   23篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 124 毫秒
981.
The cytosolic pathogen sensor RIG‐I is activated by RNAs with exposed 5′‐triphosphate (5′‐ppp) and terminal double‐stranded structures, such as those that are generated during viral infection. RIG‐I has been shown to translocate on dsRNA in an ATP‐dependent manner. However, the precise role of the ATPase activity in RIG‐I activation remains unclear. Using in vitro‐transcribed Sendai virus defective interfering RNA as a model ligand, we show that RIG‐I oligomerizes on 5′‐ppp dsRNA in an ATP hydrolysis‐dependent and dsRNA length‐dependent manner, which correlates with the strength of type‐I interferon (IFN‐I) activation. These results establish a clear role for the ligand‐induced ATPase activity of RIG‐I in the stimulation of the IFN response.  相似文献   
982.
983.
984.
985.
986.
987.
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.  相似文献   
988.
The discovery that genetic mutations in several cellular pathways can increase lifespan has lent support to the notion that pharmacological inhibition of aging pathways can be used to extend lifespan and to slow the onset of age‐related diseases. However, so far, only few compounds with such activities have been described. Here, we have conducted a chemical genetic screen for compounds that cause the extension of chronological lifespan of Schizosaccharomyces pombe. We have characterized eight natural products with such activities, which has allowed us to uncover so far unknown anti‐aging pathways in S. pombe. The ionophores monensin and nigericin extended lifespan by affecting vacuolar acidification, and this effect depended on the presence of the vacuolar ATPase (V‐ATPase) subunits Vma1 and Vma3. Furthermore, prostaglandin J2 displayed anti‐aging properties due to the inhibition of mitochondrial fission, and its effect on longevity required the mitochondrial fission protein Dnm1 as well as the G‐protein‐coupled glucose receptor Git3. Also, two compounds that inhibit guanosine monophosphate (GMP) synthesis, mycophenolic acid (MPA) and acivicin, caused lifespan extension, indicating that an imbalance in guanine nucleotide levels impinges upon longevity. We furthermore have identified diindolylmethane (DIM), tschimganine, and the compound mixture mangosteen as inhibiting aging. Taken together, these results reveal unanticipated anti‐aging activities for several phytochemicals and open up opportunities for the development of novel anti‐aging therapies.  相似文献   
989.
Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco‐phospho head groups with tetraether cores, having 0–4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one‐fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco‐phospholipids containing N‐acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono‐, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound‐specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, ‘Bison Pool’ and Flat Cone, lipids derived from Aquificales are enriched in 13C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales‐diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show a similar variance, with values resembling the DIC or DOC pool or a mixture thereof. This variance cannot be explained by hot spring chemistry or temperature alone, but instead, we argue that intermittent input of exogenous organic carbon can result in metabolic shifts of the chemotrophic communities from autotrophy to heterotrophy and vice versa.  相似文献   
990.
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed ‘WormFarm’, an integrated microfluidic device for culturing nematodes. Cohorts of 30–50 animals are maintained throughout their lifespan in each of eight separate chambers on a single WormFarm polydimethylsiloxane chip. Design features allow for automated removal of progeny and efficient control of environmental conditions. In addition, we have developed computational algorithms for automated analysis of video footage to quantitate survival and other phenotypes, such as body size and motility. As proof‐of‐principle, we show here that WormFarm successfully recapitulates survival data obtained from a standard plate‐based assay for both RNAi‐mediated and dietary‐induced changes in lifespan. Further, using a fluorescent reporter in conjunction with WormFarm, we report an age‐associated decrease in fluorescent intensity of GFP in transgenic worms expressing GFP tagged with a mitochondrial import signal under the control of the myo‐3 promoter. This marker may therefore serve as a useful biomarker of biological age and aging rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号