首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   16篇
  国内免费   53篇
  2023年   6篇
  2022年   12篇
  2021年   11篇
  2020年   11篇
  2019年   16篇
  2018年   14篇
  2017年   14篇
  2016年   22篇
  2015年   29篇
  2014年   26篇
  2013年   46篇
  2012年   65篇
  2011年   27篇
  2010年   26篇
  2009年   13篇
  2008年   27篇
  2007年   17篇
  2006年   23篇
  2005年   21篇
  2004年   14篇
  2003年   24篇
  2002年   12篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   9篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
排序方式: 共有523条查询结果,搜索用时 468 毫秒
61.
Metabolomics is a powerful new technology that allows for the assessment of global metabolic profiles in easily accessible biofluids and biomarker discovery in order to distinguish between diseased and nondiseased status information. Deciphering the molecular networks that distinguish diseases may lead to the identification of critical biomarkers for disease aggressiveness. However, current diagnostic methods cannot predict typical Jaundice syndrome (JS) in patients with liver disease and little is known about the global metabolomic alterations that characterize JS progression. Emerging metabolomics provides a powerful platform for discovering novel biomarkers and biochemical pathways to improve diagnostic, prognostication, and therapy. Therefore, the aim of this study is to find the potential biomarkers from JS disease by using a nontarget metabolomics method, and test their usefulness in human JS diagnosis. Multivariate data analysis methods were utilized to identify the potential biomarkers. Interestingly, 44 marker metabolites contributing to the complete separation of JS from matched healthy controls were identified. Metabolic pathways (Impact-value≥0.10) including alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies were found to be disturbed in JS patients. This study demonstrates the possibilities of metabolomics as a diagnostic tool in diseases and provides new insight into pathophysiologic mechanisms.  相似文献   
62.
Zhao L  Gu A  Ji G  Zou P  Zhao P  Lu A 《PloS one》2012,7(1):e29479

Background and Objectives

It has become increasingly clear that ATM (ataxia-telangiectasia-mutated) safeguards genome stability, which is a cornerstone of cellular homeostasis, and ATM IVS 22-77 T>C affects the normal activity of ATM proteins. However, the association between the ATM IVS 22-77 T>C genetic variant and cancer risk is controversial. Therefore, we conducted a systematic meta-analysis to estimate the overall cancer risk associated with the polymorphism and to quantify any potential between-study heterogeneity.

Methods

A total of nine studies including 4,470 cases and 4,862 controls were analyzed for ATM IVS 22-77 T>C association with cancer risk in this meta-analysis. Heterogeneity among articles and their publication bias were also tested.

Results

Our results showed that no association reached the level of statistical significance in the overall risk. Interestingly, in the stratified analyses, we observed an inverse relationship in lung and breast cancer.

Conclusion

Further functional research on the ATM mechanism should be performed to explain the inconsistent results in different cancer types.  相似文献   
63.

Background

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA methylation, DNA synthesis, and DNA repair. In addition, it is a possible risk factor in neural tube defects (NTDs). The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results remain inconclusive. In this study, we performed a meta-analysis with 2429 cases and 3570 controls to investigate the effect of the MTHFR C677T polymorphism on NTDs.

Methods

An electronic search of PubMed and Embase database for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analysed with STATA (version 11). Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were performed in our meta-analysis.

Results

A significant association between the MTHFR C677T polymorphism and NTD susceptibility was revealed in our meta-analysis ( TT versus CC: OR  = 2.022, 95% CI: 1.508, 2.712; CT+TT versus CC: OR  = 1.303, 95% CI: 1.089, 1.558; TT versus CC+CT: OR  = 1.716, 95% CI: 1.448, 2.033; 2TT+CT versus 2CC+CT: OR  = 1.330, 95% CI: 1.160, 1.525). Moreover, an increased NTD risk was found after stratification of the MTHFR C677T variant data by ethnicity and source of controls.

Conclusion

The results suggested the maternal MTHFR C677T polymorphism is a genetic risk factor for NTDs. Further functional studies to investigate folate-related gene polymorphisms, periconceptional multivitamin supplements, complex interactions, and the development of NTDs are warranted.  相似文献   
64.
Liang H  Xu J  Zhao D  Tian H  Yang X  Liang A  Wang W 《The FEBS journal》2012,279(14):2520-2533
Amitosis, a direct method of cell division is common in ciliated protozoan, fungi and some animal and plant cells. During amitosis, intranuclear microtubules are reorganized into specified arrays which assist in separation of nucleus, despite lack of a bipolar spindle. However, the regulation of amitosis is not understood. Here, we focused on the localization and role of mitotic spindle assembly regulator: Ran GTPase (Ran1) in macronuclear amitosis in binucleated protozoan Tetrahymena thermophila. HA-tagged Ran1 was localized in the macronucleus throughout the cell cycle of Tetrahymena during vegetative growth, and the accessory factor binding domains of Ran1 contributed to its macronuclear localization. Incomplete somatic knockout of RAN1 resulted in aberrant intramacronuclear microtubule array formation, missegregation of macronuclear chromosomes and ultimately blocked macronuclei proliferation. When the Ran1 cycle was perturbed by overexpression of Ran1T25N (GDP-bound Ran1-mimetic) or Ran1Q70L (GTP-bound Ran1-mimetic), intramacronuclear microtubule assembly was inhibited or multi-micronucleate cells formed. These results suggest that Ran GTPase pathway is involved in assembly of a specialized intramacronuclear microtubule network and coordinates amitotic progression in Tetrahymena.  相似文献   
65.

Background

Drugs can influence the whole biological system by targeting interaction reactions. The existence of interactions between drugs and network reactions suggests a potential way to discover targets. The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of drug-targets in current datasets are validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy. Currently, network pharmacology has used in identifying potential drug targets to predicting the spread of drug activity and greatly contributed toward the analysis of biological systems on a much larger scale than ever before.

Methods

In this article, we present a computational method to predict targets for rhein by exploring drug-reaction interactions. We have implemented a computational platform that integrates pathway, protein-protein interaction, differentially expressed genome and literature mining data to result in comprehensive networks for drug-target interaction. We used Cytoscape software for prediction rhein-target interactions, to facilitate the drug discovery pipeline.

Results

Results showed that 3 differentially expressed genes confirmed by Cytoscape as the central nodes of the complicated interaction network (99 nodes, 153 edges). Of note, we further observed that the identified targets were found to encompass a variety of biological processes related to immunity, cellular apoptosis, transport, signal transduction, cell growth and proliferation and metabolism.

Conclusions

Our findings demonstrate that network pharmacology can not only speed the wide identification of drug targets but also find new applications for the existing drugs. It also implies the significant contribution of network pharmacology to predict drug targets.  相似文献   
66.
Foetal cells secrete more growth factors, generate less immune response, grow and proliferate better than adult cells. These characteristics make them desirable for recombinant modification and use in microencapsulated cellular gene therapeutics. We have established a system in vitro to obtain a pure population of primary human foetal myoblasts under several rounds of selection with non-collagen coated plates and identified by desmin staining. These primary myoblasts presented good proliferation ability and better differentiation characteristics in monolayer and after microencapsulation compared to murine myoblast C2C12 cells based on creatine phosphokinase (CPK), major histocompatibility complex (MHC) and multi-nucleated myotubule determination. The lifespan of primary myoblasts was 70 population doublings before entering into senescent state, with a population time of 18-24 hrs. Hence, we have developed a protocol for isolating human foetal primary myoblasts with excellent differentiation potential and robust growth and longevity. They should be useful for cell-based therapy in human clinical applications with microencapsulation technology.  相似文献   
67.
Measurement of breathing volumes in neonatal mice is of growing importance in order to characterize the influence of development and genetic modifications on respiratory control to evaluate hypotheses concerned with human infant deficits that may affect sudden infant death syndrome, for example. Current techniques require undesirable physical constraints or incur possible artifacts specific to very small animals. We have examined the utility of a recently proposed approach using an acoustic resonance procedure that does not require undue physical constraint beyond placement in the acoustic plethysmograph. We show here that this approach can be applied to baby mice 5 days after birth and that it can be accurately calibrated. In addition, this approach should be useful to study unrestrained neonatal mice under conditions where body temperature approaches environmental temperature and barometric plethysmography cannot be used.  相似文献   
68.
One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III) was investigated using some biophysical and biochemical methods. Firstly, it was found that a large amount of Tb(III) can be distributed on the cell wall, that some Tb(III) can enter into the horseradish cell, indicating that peroxidase was mainly distributed on cell wall, and thus that Tb(III) would interact with horseradish peroxidase (HRP) in the plant. In addition, peroxidase bioactivity was decreased in the presence of Tb(III). Secondly, a new peroxidase-containing Tb(III) complex (Tb–HRP) was obtained from horseradish after treatment with Tb(III); the molecular mass of Tb–HRP is near 44 kDa and the pI is about 8.80. Thirdly, the electrocatalytic activity of Tb–HRP is much lower than that of HRP obtained from horseradish without treatment with Tb(III). The decrease in the activity of Tb–HRP is due to the destruction (unfolding) of the conformation in Tb–HRP. The planarity of the heme active center in the Tb–HRP molecule was increased and the extent of exposure of Fe(III) in heme was decreased, leading to inhibition of the electron transfer. The microstructure change in Tb–HRP might be the result of the inhibition effect of Tb(III) on peroxidase activity in horseradish.  相似文献   
69.
为了提高P277肽抗1型糖尿病的作用, 把P277肽融合在卡介苗热休克蛋白65的C端, 构建了pET28a- HSP65-P277高效表达载体, 在大肠杆菌中高效可溶性表达。利用硫酸铵分级沉淀、阴离子交换柱层析分离纯化了融合蛋白HSP65-P277。使用HSP65-P277在没有任何佐剂存在的情况下免疫非肥胖性糖尿病(NOD)小鼠, 通过三次腹腔注射, 每月收集被免疫动物的血清, 血糖浓度用自动生化分析仪测定。结果显示HSP65-P277免疫组小鼠血糖平均值及糖尿病的累积发病率和其余组相比均有显著差异(P<0.01), 融合蛋白HSP65-P277抗NOD小鼠糖尿病的作用显著高于单独的P277和HSP65。为进一步开发能用于临床的1型糖尿病疫苗提供了良好的设计思路, HSP65-P277极有可能进一步发展成为新的抗I型糖尿病的疫苗。  相似文献   
70.
To evaluate the function of widely distributed central chemoreceptors during sleep and wakefulness in the rat, we focally stimulate single chemoreceptor sites during naturally occurring sleep-wake cycles by microdialysis of artificial cerebrospinal fluid equilibrated with 25% CO2. In retrotrapezoid nucleus, this increased ventilation (tidal volume) by 24% only in wakefulness (Li A, Randall M, and Nattie E. J Appl Physiol 87: 910-919, 1999). In caudal medullary raphé, it increased ventilation (frequency) by 15-20% only in sleep (Nattie EE and Li A. J Appl Physiol 90: 1247-1257, 2001). Here, in nucleus tractus solitarius (NTS), focal acidification significantly increased ventilation by 11% in sleep and 7% in wakefulness rostrally (n = 5) and by 16% in sleep and 28% in wakefulness caudally (n = 5). The sleep-wake cycle was unaltered. Dialysis with 5% CO2 had no effect. Dialysis with 50% CO2 caudally did not further stimulate ventilation but did disrupt sleep. Central chemoreceptors in the NTS affect breathing in both sleep and wakefulness. The threshold for arousal in caudal NTS is greater than that for the stimulation of breathing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号