首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   6篇
  93篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1997年   1篇
  1989年   1篇
排序方式: 共有93条查询结果,搜索用时 0 毫秒
91.
The relationships between cardiac cell structure and the regulation of mitochondrial respiration were studied by applying fluorescent confocal microscopy and analysing the kinetics of mitochondrial ADP-stimulated respiration, during calcium-induced contraction in permeabilized cardiomyocytes and myocardial fibers, and in their 'ghost' preparations (after selective myosin extraction). Up to 3 microm free calcium, in the presence of ATP, induced strong contraction of permeabilized cardiomyocytes with intact sarcomeres, accompanied by alterations in mitochondrial arrangement and a significant decrease in the apparent K(m) for exogenous ADP and ATP in the kinetics of mitochondrial respiration. The V(max) of respiration showed a moderate (50%) increase, with an optimum at 0.4 microm free calcium and a decrease at higher calcium concentrations. At high free-calcium concentrations, the direct flux of ADP from ATPases to mitochondria was diminished compared to that at low calcium levels. All of these effects were unrelated either to mitochondrial calcium overload or to mitochondrial permeability transition and were not observed in 'ghost' preparations after the selective extraction of myosin. Our results suggest that the structural changes transmitted from contractile apparatus to mitochondria modify localized restrictions of the diffusion of adenine nucleotides and thus may actively participate in the regulation of mitochondrial function, in addition to the metabolic signalling via the creatine kinase system.  相似文献   
92.
The nucleic acids of Escherichia coli cells were uniformly labelled with 32P by growing the cells in [32P]orthophosphoric acid for about four generations. The cells were harvested in the logarithmic phase, resuspended in a buffer containing 6 mM Mg2+, 150 mM NH4+ and polyamines and incubated for 3 min at 37 degrees C in the presence of 3H-labelled amino acids. This procedure preferentially labels growing peptidyl chains. Polysomes were isolated, the fraction in the post-translocational state was assessed by a puromycin reaction and the tRNA content/70S ribosome was quantified in comparison to the amount of 5S rRNA determined after separation by gel electrophoresis. The data revealed that at least 75% of post-translocational ribosomes in isolated native polysomes carry a tRNA in their E site. The results are consistent with the allosteric three-site model for the elongation cycle but disagree with the two-site model.  相似文献   
93.
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号