首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   108篇
  2023年   8篇
  2021年   21篇
  2020年   11篇
  2019年   16篇
  2018年   12篇
  2017年   12篇
  2016年   16篇
  2015年   41篇
  2014年   31篇
  2013年   35篇
  2012年   46篇
  2011年   56篇
  2010年   32篇
  2009年   15篇
  2008年   37篇
  2007年   39篇
  2006年   39篇
  2005年   30篇
  2004年   27篇
  2003年   35篇
  2002年   17篇
  2001年   28篇
  2000年   27篇
  1999年   38篇
  1998年   9篇
  1997年   9篇
  1996年   12篇
  1995年   12篇
  1994年   14篇
  1992年   32篇
  1991年   21篇
  1990年   18篇
  1989年   19篇
  1988年   14篇
  1987年   13篇
  1986年   19篇
  1985年   23篇
  1984年   16篇
  1983年   5篇
  1982年   13篇
  1981年   7篇
  1980年   3篇
  1979年   8篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
排序方式: 共有994条查询结果,搜索用时 328 毫秒
131.
132.
Two experiments examined the nature of visuo-spatial mental imagery generation and maintenance in 4-, 6-, 8-, 10-year old children and adults (N = 211). The key questions were how image generation and maintenance develop (Experiment 1) and how accurately children and adults coordinate mental and visually perceived images (Experiment 2). Experiment 1 indicated that basic image generation and maintenance abilities are present at 4 years of age but the precision with which images are generated and maintained improves particularly between 4 and 8 years. In addition to increased precision, Experiment 2 demonstrated that generated and maintained mental images become increasingly similar to visually perceived objects. Altogether, findings suggest that for simple tasks demanding image generation and maintenance, children attain adult-like precision younger than previously reported. This research also sheds new light on the ability to coordinate mental images with visual images in children and adults.  相似文献   
133.

Background and Aims

Biological soil crust (biocrust) communities, though common and important in the intermountain west, have received little research attention. There are gaps in understanding what influences biocrust species’ abundance and distributions in this ecoregion. Climatic, edaphic, topographic, and biotic forces, in addition to anthropogenic disturbance can all influence the biocrust.

Methods

We determined the relative influence of several possible environmental filters in biocrust communities of western Montana (USA) grasslands at two spatial scales. The larger scale exploited strong topographically-dictated climatic variation across >60km2, while the smaller scale focused on differences among distinct microsites within ~700m2 plots.

Results

We detected a total of 96 biocrust taxa, mostly lichens. Biocrust richness at each site ranged from 0 to 39 species, averaging 14 species. Insolation, aspect, and disturbance history were the strongest predictors of biocrust richness, abundance, and species turnover across the landscape; soil texture was influential for some biocrust community properties. Steep, north-facing slopes that receive longer periods of shade harbored higher diversity and cover of biocrust than south-facing sites. At a small scale, interspaces among native herbaceous communities supported the greatest diversity of biocrust species, but microsites under shrub canopies supported the greatest cover.

Conclusions

We found that, among the variables investigated, tillage, insolation, soil texture and the associated vegetation community were the most important drivers of biocrust abundance and species richness. This study can inform the practice of restoration and conservation, and also guide future work to improve predictions of biocrust properties.
  相似文献   
134.
Syntrichia ruralis is a cosmopolitan moss that occupies steep environmental gradients. In arid to semi-arid regions of the world it is a key component of biological soil crusts, which are fundamental to healthy dryland ecosystem processes. As such, S. ruralis has attracted the attention of conservationists seeking to restore degraded biological soil crust communities and their associated vascular flora. Here, we generate genomic data for S. ruralis populations that span climatic gradients across the Colorado Plateau of the southwestern USA to investigate the contributions of neutral and deterministic processes to the partitioning of genomic structure. Although S. ruralis appears to be highly dispersible, geographic proximity significantly predicts genomic similarity. In addition, even when taking into account apparently high migration rates among populations and spatial autocorrelation of allele frequencies, some genomic variation is explained by environmental gradients correlated with elevation and latitude. Consequently, efforts to restore dryland ecosystems by establishing S. ruralis as a foundation should include strategies to ensure that propagule sources of this moss are environmentally stratified and targeted to the current/future climates of restoration sites.  相似文献   
135.
Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground‐nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage‐grouse (Centrocercus urophasianus; sage‐grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage‐grouse, we reanalyzed existing datasets comprising >800 sage‐grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage‐grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage‐grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.  相似文献   
136.
In pancreatic islets from hereditarily diabetic GK rats, [1,12 -(14)C] dodecanedioic acid (5.0 mM) was oxidized at a rate representing about 5 % of that of D-[U - (14)C] glucose (8.3 mM). Dioic acid and hexose failed to exert any significant reciprocal effects on their respective oxidation. The production of (14)CO(2) from [1,12 -(14)C] dodecanedioic acid was proportional to its concentration in the 0.2 - 5.0 mM range. These results were essentially comparable to those obtained in islets from control rats. They extend, therefore, to GK rats the knowledge that dodecanedioic acid acts as a nutrient in pancreatic islet cells.  相似文献   
137.
The activated fibroblast growth factor receptor (FGFR)-1 is phosphorylated on five tyrosine residues outside the catalytic site. Although one such residue, Tyr730, is flanked by potential binding sites for phosphotyrosine-interacting molecules, a physiological role for this region is still controversial. We report that a cell-permeant phosphopeptide mimic of this site, FGFR730(p)Y, inhibits FGF-mediated mitogenesis in cells with no effect on responses stimulated by other growth factors. A similar phosphopeptide corresponding to the phospholipase Cgamma binding site on the receptor had no effect on the mitogenic response. The FGFR730(p)Y peptide did not inhibit phosphorylation of p90/FRS2 or Erk, suggesting that it does not act by inhibiting the Erk-kinase cascade. However, the FGFR730(p)Y peptide bound Shc in a manner requiring both phosphorylated tyrosine and a putative PTB domain binding determinant. These data suggest that the peptide might inhibit mitogenesis by competing with the corresponding site on the FGFR for the ability to bind SHC.  相似文献   
138.
Human tibiae were subjected to steady state vibration over a frequency range to evaluate the use of clinical measurements of resonant frequency to characterize osteoporosis. Displacement and force transmitted to the bone were monitored and used to obtain measures of dynamic mass, stiffness, damping and resonant frequency. Initial results indicate that resonant frequency F is a less sensitive indicator of change in state than either generalized mass M or generalized stiffness K due to the functional relationship of these three parameters.  相似文献   
139.
140.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号