首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   3篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell-cell and cell-ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue.  相似文献   
12.
The orientation of a methoxy substituent is known to substantially influence the electron affinity and vibrational spectroscopy of benzoquinones, and has been suggested to be important in determining the function of ubiquinone as a redox cofactor in bioenergetics. Ubiquinone functions as both the primary (Q(A)) and secondary (Q(B)) quinone in the reaction centers of many purple photosynthetic bacteria, and is almost unique in its ability to establish the necessary redox free energy gap for 1-electron transfer between them. The role of the methoxy substitution in this requirement was examined using monomethoxy analogues of ubiquinone-4 - 2-methoxy-3,5-dimethyl-6-isoprenyl-1,4-benzoquinone (2-MeO-Q) and 3-methoxy-2,5-dimethyl-6-isoprenyl-1,4-benzoquinone (3-MeO-Q). Only 2-MeO-Q was able to simultaneously act as Q(A) and Q(B) and the necessary redox potential tuning was shown to occur in the Q(B) site. In the absence of active Q(B), the IR spectrum of the monomethoxy quinones was examined in vitro and in the Q(A) site, and a novel distinction between the two methoxy groups was tentatively identified, consistent with the unique role of the 2-methoxy group in distinguishing Q(A) and Q(B) functionality.  相似文献   
13.
Considering the natural abundance and low cost of sodium resources, sodium‐ion batteries (SIBs) have received much attention for large‐scale electrochemical energy storage. However, smart structure design strategies and good mechanistic understanding are required to enable advanced SIBs with high energy density. In recent years, the exploration of advanced cathode, anode, and electrolyte materials, as well as advanced diagnostics have been extensively carried out. This review mainly focuses on the challenging problems for the attractive battery materials (i.e., cathode, anode, and electrolytes) and summarizes the latest strategies to improve their electrochemical performance as well as presenting recent progress in operando diagnostics to disclose the physics behind the electrochemical performance and to provide guidance and approaches to design and synthesize advanced battery materials. Outlook and perspectives on the future research to build better SIBs are also provided.  相似文献   
14.
15.
16.
In developmentally regulated D1:S3 splicing of Nav1.5, there are 31 nucleotide differences between the 5'-exon ('neonatal') and the 3'-exon ('adult') forms, resulting in 7 amino acid differences in D1:S3-S3/S4 linker. In particular, splicing replaces a conserved negative aspartate residue in the 'adult' with a positive lysine. Here, 'neonatal' and 'adult' Nav1.5 alpha-subunit splice variants were stably transfected into EBNA-293 cells and their electrophysiological properties investigated by whole-cell patch-clamp recording. Compared with the 'adult' isoform, the 'neonatal' channel exhibited (1) a depolarized threshold of activation and voltage at which the current peaked; (2) much slower kinetics of activation and inactivation; (3) 50% greater transient charge (Na(+)) influx; (4) a stronger voltage dependence of time to peak; and (5) a slower recovery from inactivation. Tetrodotoxin sensitivity and VGSCbeta1-4 mRNA expression levels did not change. The significance of the charge-reversing aspartate to lysine substitution was investigated by mutating the lysine in the 'neonatal' channel back to aspartate. In this 'neonatal K211D' mutant, the electrophysiological parameters studied strongly shifted back towards the 'adult', that is the lysine residue was primarily responsible for the electrophysiological effects of Nav1.5 D1:S3 splicing. Taken together, these data suggest that the charge reversal in 'neonatal' Nav1.5 would (1) modify the channel kinetics and (2) prolong the resultant current, allowing greater intracellular Na(+) influx. Developmental and pathophysiological consequences of such differences are discussed.  相似文献   
17.
18.

Background

Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans.

Methods

The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS).

Results

While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins.

Conclusions

This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.
  相似文献   
19.
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. SMA is caused by the homozygous absence of survival motor neuron-1 (SMN1). SMN2, a nearly identical copy gene, is retained in all SMA patients and encodes an identical protein as SMN1; however, SMN1 and SMN2 differ by a silent C to T transition which results in the production of an alternatively spliced isoform (SMNΔ7), which encodes a defective protein, demonstrating that the absence of the short peptide encoded by SMN exon 7 is critical in SMA development. Previously, we have shown that for some functions heterologous sequences can compensate for the exon 7 peptide, suggesting that the SMN C-terminus functions non-specifically. Consistent with this hypothesis, we now identify novel aminoglycosides that can induce SMN protein levels in patient fibroblasts. This hypothesis was supported, in part, by a novel fluorescent SMN read-through assay. Interestingly, however, through the development of a SMN exon 7-specific antibody, results suggested that levels of normal full-length SMN might also be elevated by aminoglycoside treatment. These results demonstrate that the compounds that promote read-through may provide an alternative platform for the discovery of compounds that induce SMN protein levels.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号