首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2320篇
  免费   179篇
  国内免费   144篇
  2643篇
  2024年   4篇
  2023年   13篇
  2022年   56篇
  2021年   68篇
  2020年   67篇
  2019年   75篇
  2018年   93篇
  2017年   58篇
  2016年   96篇
  2015年   117篇
  2014年   139篇
  2013年   162篇
  2012年   188篇
  2011年   153篇
  2010年   98篇
  2009年   92篇
  2008年   111篇
  2007年   106篇
  2006年   104篇
  2005年   85篇
  2004年   121篇
  2003年   104篇
  2002年   82篇
  2001年   78篇
  2000年   64篇
  1999年   44篇
  1998年   22篇
  1997年   16篇
  1996年   15篇
  1995年   10篇
  1994年   12篇
  1993年   8篇
  1992年   20篇
  1991年   24篇
  1990年   15篇
  1989年   18篇
  1988年   14篇
  1987年   10篇
  1986年   11篇
  1985年   9篇
  1983年   7篇
  1982年   4篇
  1980年   4篇
  1979年   5篇
  1977年   6篇
  1976年   5篇
  1973年   4篇
  1972年   4篇
  1969年   5篇
  1968年   3篇
排序方式: 共有2643条查询结果,搜索用时 10 毫秒
61.
Phosphorus (P) is an essential macronutrient required for plant development and production. The mechanisms regulating phosphate (Pi) uptake are well established, but the function of chloroplast Pi homeostasis is poorly understood in Oryza sativa (rice). PHT2;1 is one of the transporters/translocators mediating Pi import into chloroplasts. In this study, to gain insight into the role of OsPHT2;1‐mediated stroma Pi, we analyzed OsPHT2;1 function in Pi utilization and photoprotection. Our results showed that OsPHT2;1 was induced by Pi starvation and light exposure. Cell‐based assays showed that OsPHT2;1 localized to the chloroplast envelope and functioned as a low‐affinity Pi transporter. The ospht2;1 had reduced Pi accumulation, plant growth and photosynthetic rates. Metabolite profiling revealed that 52.6% of the decreased metabolites in ospht2;1 plants were flavonoids, which was further confirmed by 40% lower content of total flavonoids compared with the wild type. As a consequence, ospht2;1 plants were more sensitive to UV‐B irradiation. Moreover, the content of phenylalanine, the precursor of flavonoids, was also reduced, and was largely associated with the repressed expression of ADT1/MTR1. Furthermore, the ospht2;1 plants showed decreased grain yields at relatively high levels of UV‐B irradiance. In summary, OsPHT2;1 functions as a chloroplast‐localized low‐affinity Pi transporter that mediates UV tolerance and rice yields at different latitudes.  相似文献   
62.
Ai  Xiaopeng  Dong  Xing  Guo  Ying  Yang  Peng  Hou  Ya  Bai  Jinrong  Zhang  Sanyin  Wang  Xiaobo 《Purinergic signalling》2021,17(2):229-240

Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.

  相似文献   
63.
64.
Hydrazobenzene is carcinogenic to rats and mice and azobenzene is carcinogenic to rats. Hydrazobenzene is a metabolic intermediate of azobenzene. To clarify the mechanism of carcinogenesis by azobenzene and hydrazobenzene, we investigated DNA damage induced by hydrazobenzene, using 32P-5′-end-labeled DNA fragments obtained from the c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. Hydrazobenzene caused DNA damage in the presence of Cu(II). Piperidine treatment enhanced the DNA damage greatly, suggesting that hydrazobenzene caused base modification and liberation. However, azobenzene did not cause DNA damage even in the presence of Cu(II). Hydrazobenzene plus Cu(II) caused DNA damage frequently at thymine residues. Catalase and a Cu(I)-specific chelator inhibited Cu(II)-mediated DNA damage by hydrazobenzene. Typical ·OH scavengers did not inhibit the DNA damage. The main active species is probably a metal oxygen complex, such as Cu(I)-OOH. Formation of 8-oxo-7, 8-dihydro-2′-deoxyguanosine was increased by hydrazobenzene in the presence of Cu(II). Oxygen consumption and UV-Visible spectroscopic measurements have shown that hydrazobenzene is autoxidized to azobenzene with H2O2 formation. It is considered that the metal-mediated DNA damage by hydrazobenzene through H2O2 generation may be relevant for the expression of carcinogenicity of azobenzene and hydrazobenzene.  相似文献   
65.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   
66.
Fractionated radiotherapy (RT) is widely used in cancer treatment, because it preserves normal tissues. However, repopulation of radioresistant tumors during fractionated RT limits the efficacy of RT. We recently demonstrated that a moderate level of long-term fractionated radiation confers acquired radioresistance to tumor cells, which is caused by DNA-PK/AKT/GSK3β-mediated cyclin D1 overexpression. The resulting cyclin D1 overexpression leads to forced progression of the cell cycle to S-phase, concomitant with induction of DNA double-strand breaks (DSBs). In this study, we investigated the molecular mechanisms underlying cyclin D1 overexpression-induced DSBs during DNA replication in acquired radioresistant cells. DNA fiber data demonstrated that replication forks progressed slowly in acquired radioresistant cells compared with corresponding parental cells in HepG2 and HeLa cell lines. Slowly progressing replication forks were also observed in HepG2 and HeLa cells that overexpressed a nondegradable cyclin D1 mutant. We also found that knockdown of Mus81endonuclease, which is responsible for resolving aberrant replication forks, suppressed DSB formation in acquired radioresistant cells. Consequently, Mus81 created DSBs to remove aberrant replication forks in response to replication perturbation triggered by cyclin D1 overexpression. After treating cells with a specific inhibitor for DNA-PK or ATM, apoptosis rates increased in acquired radioresistant cells but not in parental cells by inhibiting the DNA damage response to cyclin D1-mediated DSBs. This suggested that these inhibitors might eradicate acquired radioresistant cells and improve fractionated RT outcomes.  相似文献   
67.

Background

No attention has been paid on comparing a set of genome sequences crossing genetic components and biological categories with far divergence over large size range. We define it as the systematic comparative genomics and aim to develop the methodology.

Results

First, we create a method, GenomeFingerprinter, to unambiguously produce a set of three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections, to illustrate the genome fingerprint of a given genome sequence. Second, we develop a set of concepts and tools, and thereby establish a method called the universal genome fingerprint analysis (UGFA). Particularly, we define the total genetic component configuration (TGCC) (including chromosome, plasmid, and phage) for describing a strain as a systematic unit, the universal genome fingerprint map (UGFM) of TGCC for differentiating strains as a universal system, and the systematic comparative genomics (SCG) for comparing a set of genomes crossing genetic components and biological categories. Third, we construct a method of quantitative analysis to compare two genomes by using the outcome dataset of genome fingerprint analysis. Specifically, we define the geometric center and its geometric mean for a given genome fingerprint map, followed by the Euclidean distance, the differentiate rate, and the weighted differentiate rate to quantitatively describe the difference between two genomes of comparison. Moreover, we demonstrate the applications through case studies on various genome sequences, giving tremendous insights into the critical issues in microbial genomics and taxonomy.

Conclusions

We have created a method, GenomeFingerprinter, for rapidly computing, geometrically visualizing, intuitively comparing a set of genomes at genome fingerprint level, and hence established a method called the universal genome fingerprint analysis, as well as developed a method of quantitative analysis of the outcome dataset. These have set up the methodology of systematic comparative genomics based on the genome fingerprint analysis.  相似文献   
68.
The C-terminus of the putative cell surface protein CspI which contains one putative LPxTG motif region and a signal peptides fragment were amplified from L. plantarum CICC6024, and the green fluorescent protein gene gfp was amplified from the plasmid pACGFP. The three genes were ligated and the fusion gene was named SgfpL. The fusion gene SgfpL was then cloned into shuttle expression vector pMG36e and transformed into L. plantarum. SDS-PAGE identified that the fusion protein was expressed and the band of fusion protein was observed at the predicated molecular size. Fluorescence assay, western blot against GFP antibody, protease accessibility and SDS sensitivity assays were performed to determine that the GFP was successfully displayed on the surfaces of L. plantarum cells and the maximum display capacity of the GFP fusion protein was ca. 65 μg?ml?1. The fermentation condition experiments determined that the amounts of GFP fusion protein were increased at a higher temperature and reached the peak at 2.5 h. Then, the β-galactosidase from Bifidobacterium bifidum was functionally displayed on the surface of L. plantarum cells via CspI to demonstrate the applicability of the CspI-mediated surface display system.  相似文献   
69.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
70.
A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar “White Winter Pearmain”. When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4 °C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号