首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3315篇
  免费   232篇
  国内免费   1篇
  3548篇
  2024年   4篇
  2023年   12篇
  2022年   42篇
  2021年   59篇
  2020年   38篇
  2019年   46篇
  2018年   90篇
  2017年   64篇
  2016年   124篇
  2015年   166篇
  2014年   222篇
  2013年   240篇
  2012年   289篇
  2011年   275篇
  2010年   174篇
  2009年   165篇
  2008年   197篇
  2007年   190篇
  2006年   178篇
  2005年   144篇
  2004年   182篇
  2003年   110篇
  2002年   102篇
  2001年   108篇
  2000年   72篇
  1999年   56篇
  1998年   21篇
  1997年   22篇
  1996年   13篇
  1995年   13篇
  1994年   6篇
  1993年   9篇
  1992年   16篇
  1991年   17篇
  1990年   22篇
  1989年   16篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1981年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有3548条查询结果,搜索用时 15 毫秒
981.
Pressure inactivation behavior of Bacillus amyloliquefaciens spores was investigated in deionized water. The spores of B. amyloliquefaciens were subjected to 105 degrees C and 700 MPa. The magnitude of the decrease in viability after pressure treatment was similar to that after pressure treatment followed by heat shock. The increase of dipicolinic acid (DPA) release was correlated with the spore inactivation, and the hydrophobicity did not significantly change during the pressure-assisted thermal processing (PATP). Lag phase duration increased with increasing pressure process time. The mechanisms of spore germination and inactivation during the PATP were related to a complex physiological process.  相似文献   
982.
Kim M  Rho Y  Jin KS  Ahn B  Jung S  Kim H  Ree M 《Biomacromolecules》2011,12(5):1629-1640
The pH-dependent structures of the ferritin shell (apoferritin, 24-mer) and the ferrihydrite core, under physiological conditions that permit enzymatic activity, were investigated by synchrotron small-angle X-ray scattering (SAXS). The solution structure of apoferritin was found to be nearly identical to the crystal structure. The shell thickness and hollow core volumes were estimated. The intact hollow spherical apoferritin was stable over a wide pH range, 3.40-10.0, and the ferrihydrite core was stable over the pH range 2.10-10.0. The apoferritin subunits underwent aggregation below pH 0.80, whereas the ferrihydrite cores aggregated below pH 2.10 as a result of the disassembly of the ferritin shell under the strongly acidic conditions. As the pH decreased from 3.40 to 0.80, apoferritin underwent stepwise disassembly by first forming a hollow sphere with two holes, then a headset-shaped structure, and, finally, rodlike oligomers. As the pH was increased from pH 1.96, the disassembled rodlike oligomers recovered only to the headset-shaped structure, and the disassembled headset-shaped intermediates recovered only to the hollow spherical structure with two hole defects. The apoferritin hole defects that formed during the disassembly process did not heal as the pH was increased to neutral or slightly basic conditions. The pH-induced apoferritin disassembly and reassembly processes were not fully reversible, although they were pseudoreversible over a limited pH range, between 10.0 and 2.66.  相似文献   
983.
Kim JH  Kim JH  Ahn BJ  Park JH  Shon HK  Yu YS  Moon DW  Lee TG  Kim KW 《Biophysical journal》2008,94(10):4095-4102
The distribution and movement of elemental ions in biologic tissues is critical for many cellular processes. In contrast to chemical techniques for imaging the intracellular distribution of ions, however, techniques for imaging the distribution of ions across tissues are not well developed. We used time-of-flight secondary ion mass spectrometry (TOF-SIMS) to obtain nonlabeled high-resolution analytic images of ion distribution in ischemic retinal tissues. Marked changes in Ca2+ distribution, compared with other fundamental ions, such as Na+, K+, and Mg2+, were detected during the progression of ischemia. Furthermore, the Ca2+ redistribution pattern correlated closely with TUNEL-positive (positive for terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick end-labeling) cell death in ischemic retinas. After treatment with a calcium chelator, Ca2+ ion redistribution was delayed, resulting in a decrease in TUNEL-positive cells. These results indicate that ischemia-induced Ca2+ redistribution within retinal tissues is associated with the order of apoptotic cell death, which possibly explains the different susceptibility of various types of retinal cells to ischemia. Thus, the TOF-SIMS technique provides a tool for the study of intercellular communication by Ca2+ ion movement.  相似文献   
984.
Recently, peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been reported to increase endothelial NO, but the signaling mechanisms involved are unknown. Using troglitazone, a PPARgamma ligand known as an antidiabetic compound, we investigated the molecular mechanism of its effect on NO production in bovine aortic endothelial cells. Troglitazone increased endothelial NO production in a dose- and time-dependent manner with no alteration in endothelial nitric-oxide synthase (eNOS) expression. The maximal increase ( approximately 3.1-fold) was achieved with 20 microm troglitazone treatment for 12 h, and this increase was accompanied by increases in the expression of vascular endothelial growth factor (VEGF) and its receptor, KDR/Flk-1, and in Akt phosphorylation. Analysis with antibodies specific for each phosphorylated site demonstrated that troglitazone (20 microm treatment for 12 h) significantly increased both the phosphorylation of Ser(1179) of eNOS (eNOS-Ser(1179)) and the dephosphorylation of eNOS-Ser(116) but did not alter eNOS-Thr(497) phosphorylation. Treatment with anti-VEGF antibody to scavenge the increased VEGF induced by troglitazone partially inhibited troglitazone-stimulated NO production. This was accompanied by the attenuation of troglitazone-stimulated increases in the phosphorylation of Akt and eNOS-Ser(1179) with no alteration in eNOS-Ser(116) dephosphorylation. We also found that bisphenol A diglycidyl ether, a PPARgamma antagonist, partially inhibited troglitazone-stimulated NO production with a concomitant reduction in VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation but with no alteration in eNOS-Ser(116) dephosphorylation induced by troglitazone. Taken together, our results demonstrate that prolonged treatment with troglitazone increases endothelial NO production by at least two independent signaling pathways: PPARgamma-dependent, VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser(1179) phosphorylation and PPARgamma-independent, eNOS-Ser(116) dephosphorylation.  相似文献   
985.
Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS) in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls). SNP rs9485372, near the TGF-β activated kinase (TAB2) gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10−12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals) were 0.89 (0.85–0.94) and 0.80 (0.75–0.86) for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10−6 from the combined analysis of all samples), located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10−7), located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1), and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively.  相似文献   
986.
Ahn JH  Kim Y  Kim HS  Greengard P  Nairn AC 《PloS one》2011,6(10):e26292
Tyrosine hydroxylase, which plays a critical role in regulation of dopamine synthesis, is known to be controlled by phosphorylation at several critical sites. One of these sites, Ser40, is phosphorylated by a number of protein kinases, including protein kinase A. The major protein phosphatase that dephosphorylates Ser40 is protein phosphatase-2A (PP2A). A recent study has also linked protein kinase C to the dephosphorylation of Ser40 [1], but the mechanism is unclear. PP2A isoforms are comprised of catalytic, scaffold, and regulatory subunits, the regulatory B subunits being able to influence cellular localization and substrate selection. In the current study, we find that protein kinase C is able to phosphorylate a key regulatory site in the B56δ subunit leading to activation of PP2A. In turn, activation of the B56δ-containing heterotrimeric form of PP2A is responsible for enhanced dephosphorylation of Ser40 of tyrosine hydroylase in response to stimulation of PKC. In support of this mechanism, down-regulation of B56δ expression in N27 cells using RNAi was found to increase dopamine synthesis. Together these studies reveal molecular details of how protein kinase C is linked to reduced tyrosine hydroxylase activity via control of PP2A, and also add to the complexity of protein kinase/protein phosphatase interactions.  相似文献   
987.
The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4DCAF1). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4DCAF1 and CRL4DCAF1-Vpr E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4DCAF1 E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.  相似文献   
988.
The objective of the study was to examine the application of the Anaerobic Digestion Model No. 1 (ADM1) developed by the IWA task group for mathematical modelling of anaerobic process. Lab-scale temperature-phased anaerobic digestion (TPAD) process were operated continuously, and were fed with co-substrate composed of dog food and flour. The model platform implemented in the simulation was a derivative of the ADM1. Sensitivity analysis showed that km.process (maximum specific uptake rate) and KS.process (half saturation value) had high sensitivities to model components. Important parameters including maximum uptake rate for propionate utilisers (km.pro) and half saturation constant for acetate utilisers (KS.ac) in the thermophilic digester and maximum uptake rate for acetate utilisers (km.ac) in the mesophilic digester were estimated using iterative methods, which optimized the parameters with experimental results. Simulation with estimated parameters showed good agreement with experimental results in the case of methane production, uptake of acetate, soluble chemical oxygen demand (SCOD) and total chemical oxygen demand (TCOD). Under these conditions, the model predicted reasonably well the dynamic behavior of the TPAD process for verifying the model.  相似文献   
989.
990.
Hanwoo, Korean native cattle, is indigenous to the Korean peninsula. They have been used mainly as draft animals for about 5,000 years; however, in the last 30 years, their main role has been changed to meat production by selective breeding which has led to substantial increases in their productivity. Massively parallel sequencing technology has recently made possible the systematic identification of structural variations in cattle genomes. In particular, copy number variation (CNV) has been recognized as an important genetic variation complementary to single-nucleotide polymorphisms that can be used to account for variations of economically important traits in cattle. Here we report genome-wide copy number variation regions (CNVRs) in Hanwoo cattle obtained by comparing the whole genome sequence of Hanwoo with Black Angus and Holstein sequence datasets. We identified 1,173 and 963 putative CNVRs representing 16.7 and 7.8 Mbp from comparisons between Black Angus and Hanwoo and between Holstein and Hanwoo, respectively. The potential functional roles of the CNVRs were assessed by Gene Ontology enrichment analysis. The results showed that response to stimulus, immune system process, and cellular component organization were highly enriched in the genic-CNVRs that overlapped with annotated cattle genes. Of the 11 CNVRs that were selected for validation by quantitative real-time PCR, 9 exhibited the expected copy number differences. The results reported in this study show that genome-wide CNVs were detected successfully using massively parallel sequencing technology. The CNVs may be a valuable resource for further studies to correlate CNVs and economically important traits in cattle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号