首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3314篇
  免费   233篇
  国内免费   1篇
  2024年   4篇
  2023年   12篇
  2022年   42篇
  2021年   59篇
  2020年   38篇
  2019年   46篇
  2018年   90篇
  2017年   64篇
  2016年   124篇
  2015年   166篇
  2014年   222篇
  2013年   240篇
  2012年   289篇
  2011年   275篇
  2010年   174篇
  2009年   165篇
  2008年   197篇
  2007年   190篇
  2006年   178篇
  2005年   144篇
  2004年   182篇
  2003年   110篇
  2002年   102篇
  2001年   108篇
  2000年   72篇
  1999年   56篇
  1998年   21篇
  1997年   22篇
  1996年   13篇
  1995年   13篇
  1994年   6篇
  1993年   9篇
  1992年   16篇
  1991年   17篇
  1990年   22篇
  1989年   16篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1981年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有3548条查询结果,搜索用时 62 毫秒
911.
912.
Lee S  Park B  Ahn K 《Journal of virology》2003,77(3):2147-2156
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum.  相似文献   
913.
Kim JH  Kang S  Kim J  Ahn BY 《Journal of virology》2003,77(13):7166-7173
Hepatitis B virus (HBV) X protein (HBx) plays an essential role in viral replication and in the development of hepatocellular carcinoma. HBx has the ability to transactivate the expression of all HBV proteins, including the viral core protein HBc. Consistent with its regulatory role, HBx is relatively unstable and is present at low levels in the cell. We report here that the level of HBx was significantly reduced by the coexpression of HBc in cultured human hepatoma cells, whereas the level of HBx mRNA was unaffected. The repression of HBx by HBc was relieved by treating cells with the proteasome inhibitor MG132, indicating that HBc acts by stimulating the proteasome-mediated degradation of HBx. Moreover, the inhibitory effect of HBc was specific to HBx and did not affect other proteins, including p53, a known target of the proteasome. Although no direct physical interaction between HBc and HBx could be demonstrated, mutational analysis indicated that the C-terminal half of HBc is responsible for its inhibitory effect. These results suggest that HBc functions as a novel regulator of the HBV life cycle and of hepatocellular carcinogenesis through control of the HBx level via an inhibitory feedback type of mechanism.  相似文献   
914.
A 23-year-old medical student showed a positive reaction on a skin test for Paragonimus westermani, and two Tarsonemus floricolus mites were subsequently found by sputum examination and identified morphologically. Our report is the first human case of Tarsonemus floricolus in Korea.  相似文献   
915.
916.
Long-term follow-up of left ventricular (LV) function using echocardiography has not been reported and, in this study, was carried out in normotensive (WKY) rats and spontaneously hypertensive rats (SHR). In 10 WKY rats and SHR, LV diastolic and systolic diameter (LVEDD and LVSD), shortening fraction (SF), and weight (LVW) were determined at 8, 15, 20, 35, and 80 wk of age. The ratio of early to late mitral flow and mitral annulus velocity (VE/VA and Em/Am), isovolumic relaxation time (IVRT), deceleration time of the E wave (DTE), Tei index, and mitral flow propagation velocity (Vp) were measured. No difference in LVEDD was found between SHR and WKY rats; however, LVEDD was increased at 80 wk in both strains. SF decreased slightly in old WKY rats. LVW progressively increased from 20 to 80 wk in both strains and was greater in SHR. VE/VA and Em/Am decreased at 80 wk in WKY rats. LV relaxation (IVRT, Tei index, and Vp) was progressively impaired in SHR compared with WKY rats. LV compliance (DTE) was altered in old SHR. Echocardiography permitted a long follow-up of LV function in SHR and WKY rats. Ventricular relaxation was impaired early in the life of SHR and progressed with aging. Furthermore, LV compliance was altered, but systolic function remained unchanged, in old SHR. In contrast, relaxation and SF were only slightly altered in old WKY rats, suggesting that pressure-related changes in LV function were the dominant features in the SHR.  相似文献   
917.
918.
The substrate flexibility of the erythromycin C-12 hydroxylase from Saccharopolyspora erythraea, EryK, was investigated to test its potential for the generation of novel polyketide structures. We have shown that EryK can accept the substrates of PikC from Streptomyces venezuelae which is responsible for the hydroxylation of YC-17 and narbomycin. In a S. venezuelae pikC deletion mutant, EryK could catalyze the hydroxylation of YC-17 and narbomycin to generate methymycin/neomethymycin and pikromycin, respectively. Molecular modeling of the enzyme-substrate complex suggested the possible interaction of EryK with alternative substrates. The results indicate that EryK is flexible toward some alternative polyketides and can be useful for structural diversification of macrolides by post-polyketide synthase hydroxylation.  相似文献   
919.
A cellulose-binding domain (CBD) fragment of a cellulase gene of Trichoderma hazianum was fused to a lipase gene of Bacillus stearothermophilus L1 to make a gene cluster for CBD-BSL lipase. The specific activity of CBD-BSL lipase for oil hydrolysis increased by 33% after being immobilized on Avicel (microcrystalline cellulose), whereas those of CBD-BSL lipase and BSL lipase decreased by 16% and 54%, respectively, after being immobilized on silica gel. Although the loss of activity of an enzyme immobilized by adsorption has been reported previously, the loss of activity of the CBD-BSL lipase immobilized on Avicel was less than 3% after 12 h due to the irreversible binding of CBD to Avicel.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号