首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3261篇
  免费   224篇
  国内免费   1篇
  3486篇
  2024年   4篇
  2023年   12篇
  2022年   42篇
  2021年   58篇
  2020年   38篇
  2019年   45篇
  2018年   90篇
  2017年   63篇
  2016年   120篇
  2015年   160篇
  2014年   218篇
  2013年   240篇
  2012年   289篇
  2011年   275篇
  2010年   170篇
  2009年   161篇
  2008年   196篇
  2007年   187篇
  2006年   177篇
  2005年   141篇
  2004年   179篇
  2003年   108篇
  2002年   102篇
  2001年   107篇
  2000年   69篇
  1999年   56篇
  1998年   16篇
  1997年   21篇
  1996年   12篇
  1995年   11篇
  1994年   5篇
  1993年   9篇
  1992年   16篇
  1991年   17篇
  1990年   21篇
  1989年   15篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有3486条查询结果,搜索用时 15 毫秒
41.
42.

Background

Patients with ALS may be exposed to variable degrees of chronic intermittent hypoxia. However, all previous experimental studies on the effects of hypoxia in ALS have only used a sustained hypoxia model and it is possible that chronic intermittent hypoxia exerts effects via a different molecular mechanism from that of sustained hypoxia. No study has yet shown that hypoxia (either chronic intermittent or sustained) can affect the loss of motor neurons or cognitive function in an in vivo model of ALS.

Objective

To evaluate the effects of chronic intermittent hypoxia on motor and cognitive function in ALS mice.

Methods

Sixteen ALS mice and 16 wild-type mice were divided into 2 groups and subjected to either chronic intermittent hypoxia or normoxia for 2 weeks. The effects of chronic intermittent hypoxia on ALS mice were evaluated using the rotarod, Y-maze, and wire-hanging tests. In addition, numbers of motor neurons in the ventral horn of the spinal cord were counted and western blot analyses were performed for markers of oxidative stress and inflammatory pathway activation.

Results

Compared to ALS mice kept in normoxic conditions, ALS mice that experienced chronic intermittent hypoxia had poorer motor learning on the rotarod test, poorer spatial memory on the Y-maze test, shorter wire hanging time, and fewer motor neurons in the ventral spinal cord. Compared to ALS-normoxic and wild-type mice, ALS mice that experienced chronic intermittent hypoxia had higher levels of oxidative stress and inflammation.

Conclusions

Chronic intermittent hypoxia can aggravate motor neuronal death, neuromuscular weakness, and probably cognitive dysfunction in ALS mice. The generation of oxidative stress with activation of inflammatory pathways may be associated with this mechanism. Our study will provide insight into the association of hypoxia with disease progression, and in turn, the rationale for an early non-invasive ventilation treatment in patients with ALS.  相似文献   
43.
Microglial activation is closely associated with neuroinflammatory pathologies. The nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasomes are highly organized intracellular sensors of neuronal alarm signaling. NLRP3 inflammasomes activate nuclear factor kappa-B (NF-κB) and reactive oxygen species (ROS), which induce inflammatory responses. Moreover, NLRP3 dysfunction is a common feature of chronic inflammatory diseases. The present study investigated the effect of a novel thiazol derivative, N-cyclooctyl-5-methylthiazol-2-amine hydrobromide (KHG26700), on inflammatory responses in lipopolysaccharide (LPS)-treated BV-2 microglial cells. KHG26700 significantly attenuated the expression of several pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in these cells, as well as the LPS-induced increases in NLRP3, NF-κB, and phospho-IkBα levels. KHG26700 also suppressed the LPS-induced increases in protein levels of autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 (LC3), and beclin-1, as well as downregulating the LPS-enhanced levels of ROS, lipid peroxidation, and nitric oxide. These results suggest that the anti-inflammatory effects of KHG26700 may be due, at least in part, to the regulation of the NLRP3-mediated signaling pathway during microglial activation.  相似文献   
44.
Epidermal growth factor stimulates the activity of several cytosolic serine/threonine protein kinases in quiescent Swiss 3T3 cells. Two of these, which use myelin basic protein (MBP) as substrate, act as kinase kinases in that they are able to activate a separate peptide kinase activity in vitro by a mechanism involving protein phosphorylation. In this study, we have identified two activities from extracts of epidermal growth factor-treated cells that stimulate an ATP-dependent activation of both of the MBP kinases, derived in their inactive precursor forms from extracts of untreated cells. The resulting MBP kinase activities are stable to further purification and can be inactivated with either tyrosine or serine/threonine protein phosphatases and then reactivated to their original levels of activity. Thus, we propose that the in vitro activation involves protein phosphorylation, stimulated by the action of novel MBP kinase activating factors that represent intermediate components in a growth factor-stimulated kinase cascade.  相似文献   
45.
Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2–3 years old) and aged (10–12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.  相似文献   
46.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   
47.
48.
Methoprene, a juvenile hormone (JH) analog, is a widely used insecticide that also accelerates behavioral development in honey bees (Apis mellifera). JH regulates the transition from nursing to foraging in adult worker bees, and treatment with JH or methoprene have both been shown to induce precocious foraging. To determine how methoprene changes honey bee behavior, we compared JH titers of methoprene‐treated and untreated bees. Behavioral observations confirmed that methoprene treatment significantly increased the number of precocious foragers in 3 out of 4 colonies. In only 1 out of 4 colonies, however, was there a significant difference in JH titers between the methoprene‐treated and control bees. Further, in all 4 colonies, there was no significant differences in JH titers between precocious and normal‐aged foragers. These results suggest that methoprene did not directly affect the endogenous JH secreted by corpora allata. Because methoprene caused early foraging without changing workers’ JH titers, we conclude that methoprene most likely acts directly on the JH receptors as a substitute for JH.  相似文献   
49.
50.
Alzheimer’s disease drug discovery regarding exploration into the molecules and processes has focused on the intrinsic causes of the brain disorder correlated with the accumulation of amyloid-β. An anti-amyloidogenic bis-styrylbenzene derivative, KMS80013, showed excellent oral bioavailability (F = 46.2%), facilitated brain penetration (26%, iv) in mouse and target specific in vivo efficacy in acute AD mouse model attenuating the cognitive deficiency in Y-maze test. Acute toxicity (LD50 >2000 mg/kg) and hERG channel inhibition (14% at 10 μM) results indicated safety of KMS80013.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号