首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6674篇
  免费   434篇
  国内免费   11篇
  2024年   20篇
  2023年   78篇
  2022年   267篇
  2021年   389篇
  2020年   146篇
  2019年   184篇
  2018年   273篇
  2017年   184篇
  2016年   267篇
  2015年   403篇
  2014年   384篇
  2013年   494篇
  2012年   487篇
  2011年   468篇
  2010年   282篇
  2009年   236篇
  2008年   279篇
  2007年   296篇
  2006年   231篇
  2005年   181篇
  2004年   177篇
  2003年   138篇
  2002年   136篇
  2001年   96篇
  2000年   71篇
  1999年   55篇
  1998年   41篇
  1997年   38篇
  1996年   28篇
  1995年   29篇
  1994年   24篇
  1993年   24篇
  1992年   54篇
  1991年   39篇
  1990年   50篇
  1989年   47篇
  1988年   37篇
  1987年   30篇
  1986年   34篇
  1985年   29篇
  1984年   38篇
  1983年   33篇
  1982年   32篇
  1981年   34篇
  1980年   40篇
  1979年   18篇
  1978年   27篇
  1977年   19篇
  1974年   22篇
  1973年   20篇
排序方式: 共有7119条查询结果,搜索用时 15 毫秒
321.
The Pittsburgh Sleep Quality Index (PSQI) is a rigorously validated questionnaire with extensive use in sleep assessment. Findings from numerous factor analytic studies of the PSQI have been interpreted to support a heterogeneous factor structure model for the test. Nevertheless, the literature continues to lack a focused evaluation of whether this heterogeneous factor structure is justified. A consideration of this issue led to a conclusion that a closer analysis of the PSQI’s factor structure was merited. To address this need a comparative confirmatory factor analysis for assessing the performance of the accepted factors models of the PSQI was conducted. A sample of university students (n = 418), age = 20.92 ± 1.81 years, BMI = 23.30 ± 2.57 kg/m2 completed the multi-structured sleep survey at Jamia Millia Islamia, New Delhi, India. Seventeen putative factor structures (three 1-Factor, eight 2-Factor, and six 3-Factor) of the PSQI from the existing literature were selected for analysis. Fourteen models (82.35%) had almost similar values for model fit indices. Two models were misfits, and one model was a poor fit. The two misfit models incorporated gender and age as covariates. The third poor fit model was used to produce a unique path diagram, which made it distinct from the remaining 16 models. The overlapping values in the fit range of the model fit indices did not support the often projected heterogeneous factor structures of the PSQI for the vast majority of the models.  相似文献   
322.
323.
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.  相似文献   
324.
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.  相似文献   
325.
326.
Emerging solar cells, namely, organic solar cells and perovskite solar cells, are the thin‐film photovoltaics that have light to electricity conversion efficiencies close to that of silicon solar cells while possessing advantages in having additional functionalities, facile‐processability, and low fabrication cost. To maximize these advantages, the electrode components must be replaced by materials that are more flexible and cost‐effective. Researchers around the globe have been looking for the new electrodes that meet these requirements. Among many candidates, single‐walled carbon nanotubes have demonstrated their feasibility as the new alternative to conventional electrodes, such as indium tin oxide and metals. This review discusses various growth methods of single‐walled carbon nanotubes and their electrode applications in thin‐film photovoltaics.  相似文献   
327.
The present study was conducted to elucidate the role of phytobeneficial bacteria to control the cellular oxidative damage in maize (Zea mays L.) plants caused by salinity. Bacteria were isolated from the rhizosphere of kallar grass (Leptochloa fusca L.) through serial dilution method and taxonomically identified on the basis of their 16S ribosomal RNA gene sequencing. In vitro phosphate solubilization, indole-3-acetic acid (IAA) synthesis, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were evaluated by solubilization index measurement, colorimetric method, and turbidity assay, respectively. In the pot experiment, the impact of single and mixed inoculation of these strains at four levels (0, 50, 100, and 200 mM) of salt stress was evaluated in terms of growth and physiological response of maize plants to salinity. The bacterial strains (STN-1, STN-5, and STN-14) were taxonomically classified as Staphylococcus spp. At 5% NaCl level, the strains demonstrated substantial potential for phosphate solubilization, ACC deaminase activity, and IAA production both with and without tryptophan. The inoculation of strains STN-1, STN-5, and mixed inoculation resulted in substantial growth improvement of maize plants along with increased antioxidant enzyme activity and decreased levels of reactive oxygen species. In addition, single inoculation of STN-1 and STN-5 along with mixed inoculation augmented the uptake of N, P, K, and Ca+2 and reduced Na+ uptake. Current results demonstrated that the strains STN-1 and STN-5 modulated stress-responsive mechanisms and regulated ion balance in induced salinity to promote maize growth.  相似文献   
328.
Induction of an axenic filamentous‐like callus growth from the brown algae Fucus vesiculosus is described. Different treatments were investigated in various combinations to develop axenic cultures based on identification of surface symbionts via 18S ribosomal RNA. Moreover, viability was confirmed after such processes by 2,3,5‐triphenyl tetrazolium chloride assay that demonstrated an average viability of 29%, relative to nonsterilized explants. After six weeks of a phototrophic cultivation on artificial sea water‐12‐nitrilotriacetic acid (0.5% w/v agar), a filamentous‐like callus growth was observed, which was identified genetically through its mitochondrial DNA after subculturing. Achievement of confirmed marine callus cultures might enrich old previously established blue biotechnology techniques and open new chances for cultivation of brown algae for production of good manufacturing practice‐compliant bioproducts.  相似文献   
329.
Ren  Shanshan  Ahmed  Nauman  Bertels  Koen  Al-Ars  Zaid 《BMC genomics》2019,20(2):103-116
Background

Pairwise sequence alignment is widely used in many biological tools and applications. Existing GPU accelerated implementations mainly focus on calculating optimal alignment score and omit identifying the optimal alignment itself. In GATK HaplotypeCaller (HC), the semi-global pairwise sequence alignment with traceback has so far been difficult to accelerate effectively on GPUs.

Results

We first analyze the characteristics of the semi-global alignment with traceback in GATK HC and then propose a new algorithm that allows for retrieving the optimal alignment efficiently on GPUs. For the first stage, we choose intra-task parallelization model to calculate the position of the optimal alignment score and the backtracking matrix. Moreover, in the first stage, our GPU implementation also records the length of consecutive matches/mismatches in addition to lengths of consecutive insertions and deletions as in the CPU-based implementation. This helps efficiently retrieve the backtracking matrix to obtain the optimal alignment in the second stage.

Conclusions

Experimental results show that our alignment kernel with traceback is up to 80x and 14.14x faster than its CPU counterpart with synthetic datasets and real datasets, respectively. When integrated into GATK HC (alongside a GPU accelerated pair-HMMs forward kernel), the overall acceleration is 2.3x faster than the baseline GATK HC implementation, and 1.34x faster than the GATK HC implementation with the integrated GPU-based pair-HMMs forward algorithm. Although the methods proposed in this paper is to improve the performance of GATK HC, they can also be used in other pairwise alignments and applications.

  相似文献   
330.
This study was conducted to check whether the three chick Early B‐cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant‐negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号