首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6586篇
  免费   430篇
  国内免费   11篇
  7027篇
  2024年   20篇
  2023年   78篇
  2022年   267篇
  2021年   384篇
  2020年   146篇
  2019年   180篇
  2018年   271篇
  2017年   178篇
  2016年   260篇
  2015年   392篇
  2014年   381篇
  2013年   484篇
  2012年   482篇
  2011年   462篇
  2010年   281篇
  2009年   234篇
  2008年   274篇
  2007年   288篇
  2006年   229篇
  2005年   179篇
  2004年   176篇
  2003年   137篇
  2002年   136篇
  2001年   94篇
  2000年   70篇
  1999年   54篇
  1998年   39篇
  1997年   34篇
  1996年   28篇
  1995年   29篇
  1994年   24篇
  1993年   24篇
  1992年   54篇
  1991年   39篇
  1990年   50篇
  1989年   47篇
  1988年   37篇
  1987年   30篇
  1986年   34篇
  1985年   29篇
  1984年   38篇
  1983年   33篇
  1982年   32篇
  1981年   34篇
  1980年   40篇
  1979年   18篇
  1978年   27篇
  1977年   19篇
  1974年   22篇
  1973年   20篇
排序方式: 共有7027条查询结果,搜索用时 0 毫秒
111.
Summary The gal3 mutation of E. coli is an insertion of a DNA sequence, 1,100 base pairs in length, into the operator-promoter region of the galactose operon. This mutation reverts spontaneously to gal+ by excision of the insertion to produce stable, inducible revertants, or by tandem duplications of the gal operon to produce unstable, constitutive revertants. The nature of a third class of revertants, which are stable and constitutive, is the subject of the present study.The stable, constitutive class of revertants included approximately 30% of all gal+ revertants obtained from a gal3() strain. Although the constitutive reversions could be transduced by , the efficiency was found to be extremely poor and the rare transductants which did appear seemed to originate from abnormal transducing particles. It was concluded that these reversions were not normally packaged by .In order to facilitate the packaging of these reversions, the chlD-pgl region was deleted from the parent gal3() strain. Unexpectedly, the gal3 mutation in the majority of these deletions reverted to produce stable, constitutive reversions exclusively. The explanation proposed was that the chlD-pgl deletions had also removed part of the gal operator-promoter up to the gal3 insertion, so that simple excisions of the insertion yielded stable, constitutive revertants by connecting the gal structural genes to a different promoter. These revertants were not considered to be true representatives of the stable, constitutive class. The specificity of deletion end-points at the insertion was found only in the gal3() strain, and not in gal +, gal +(), or gal3 strains. Moreover, the frequency of spontaneous chlD-pgl deletions increased 10- to 15-fold in presence of the gal3 insertion.A gal phage bearing a true stable, constitutive reversion (gal c 200) was isolated from the revertant strain by subsequent deletion of the chlD-pgl segment (31). Electron micrographs of gal + and gal c 200 31(chlD pgl) DNA heteroduplexes were interpreted to indicate that the stable, constitutive reversion had arisen by a deletion of 3/4 of the gal3 insertion sequence.The main conclusions are: (i) the stable, constitutive reversions of gal3 can arise by partial deletions of the insertion sequence, apparently by elimination of the nucleotide sequence which causes polarity; (ii) the chlD-pgl deletions may exhibit preferential termination at the right extremity of the gal3 insertion in presence of prophage ; and (iii) the gal3 insertion appears to inhibit the production of gal particles by providing a nucleotide sequence which is recognized and degraded by a specific endonuclease. It is suggested that inhibition of transducing particle formation by gal3 and the preferred termination of deletions at gal3 might represent related phenomena.  相似文献   
112.
113.
A library of modified VEGFR-2 inhibitors was designed as VEGFR-2 inhibitors. Virtual screening was conducted for the hypothetical library using in silico docking, ADMET, and toxicity studies. Four compounds exhibited high in silico affinity against VEGFR-2 and an acceptable range of the drug-likeness. These compounds were synthesised and subjected to in vitro cytotoxicity assay against two cancer cell lines besides VEGFR-2 inhibitory determination. Compound D-1 showed cytotoxic activity against HCT-116 cells almost double that of sorafenib. Compounds A-1, C-6, and D-1 showed good IC50 values against VEGFR-2. Compound D-1 markedly increased the levels of caspase-8 and BAX expression and decreased the anti-apoptotic Bcl-2 level. Additionally, compound D-1 caused cell cycle arrest at pre-G1 and G2-M phases in HCT-116 cells and induced apoptosis at both early and late apoptotic stages. Compound D-1 decreased the level of TNF-α and IL6 and inhibited TNF-α and IL6. MD simulations studies were performed over 100 ns.  相似文献   
114.
Behçet''s disease (BD) is a chronic inflammatory disease. Immunological defects have been shown to play a significant role in the progression of BD. The serum levels of two long non-coding RNAs (lncRNAs), NEAT1 and MALAT1, were examined in patients with BD to identify their role in the disease pathogenesis. Both lncRNAs were mentioned as essential regulators of innate immune responses and have a crucial role in inflammatory diseases. Fifty patients with BD and a similar number of control individuals were involved in our study. At enrollment, data was collected from patients and controls, and the disease severity in active cases was determined using the Behçet''s Disease Current Activity Form (BDCAF). Levels of the two studied biomarkers in the serum, NEAT1 and MALAT1, were investigated by quantitative RT-PCR (qRT-PCR). NEAT1 levels were significantly turned down in BD patients (fold changes = 0.77, p = 0.0001) and correlated negatively with the BDCAF (r = −0.41; p = 0.003). On the other hand, the MALAT1 levels were significantly up-regulated in BD patients (fold changes = 2.65, p = 0.003). Serum levels of NEAT1 were significantly decreased in patients with active states than in stationary cases (0.387 versus 1.99, respectively; p = 0.01) and compared with controls (p = 0.001). Also, NEAT1 levels were significantly increased in patients with stationary states compared to controls (p = 0.03). There was a positive association between NEAT1 and MALAT1 levels among BD patients (r = 0.29, p = 0.04). Our findings demonstrate a possible role of NEAT1 and MALAT1 in the pathogenesis of BD.  相似文献   
115.
A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.  相似文献   
116.
117.
118.
A new series of co-drugs was designed based on hybridising the dihydropteroate synthase (DHPS) inhibitor sulphonamide scaffold with the COX-2 inhibitor salicylamide pharmacophore through biodegradable linkage to achieve compounds with synergistic dual inhibition of COX-2/PGE2 axis and DHPS enzyme to enhance antibacterial activity for treatment of septicaemia. Compounds 5 b, 5j, 5n and 5o demonstrated potent in vitro COX-2 inhibitory activity comparable to celecoxib. 5j and 5o exhibited ED50 lower than celecoxib in carrageenan-induced paw edoema test with % PGE2 inhibition higher than celecoxib. Furthermore, 5 b, 5j and 5n showed gastric safety profile like celecoxib. Moreover, in vivo antibacterial screening revealed that, 5j showed activity against S.aureus and E.coli higher than sulfasalazine. While, 5o revealed activity against E.coli higher than sulfasalazine and against S.aureus comparable to sulfasalazine. Compound 5j achieved the target goal as potent inhibitor of COX-2/PGE2 axis and in vivo broad-spectrum antibacterial activity against induced septicaemia in mice.  相似文献   
119.
120.
Accelerated cell death 11 (ACD11) is an autoimmune gene that suppresses pathogen infection in plants by preventing plant cells from becoming infected by any pathogen. This gene is widely known for growth inhibition, premature leaf chlorosis, and defense-related programmed cell death (PCD) in seedlings before flowering in Arabidopsis plant. Specific amino acid changes in the ACD11 protein’s highly conserved domains are linked to autoimmune symptoms including constitutive defensive responses and necrosis without pathogen awareness. The molecular aspect of the aberrant activity of the ACD11 protein is difficult to ascertain. The purpose of our study was to find the most deleterious mutation position in the ACD11 protein and correlate them with their abnormal expression pattern. Using several computational methods, we discovered PCD vulnerable single nucleotide polymorphisms (SNPs) in ACD11. We analysed the RNA-Seq data, identified the detrimental nonsynonymous SNPs (nsSNP), built genetically mutated protein structures and used molecular docking to assess the impact of mutation. Our results demonstrated that the A15T and A39D mutations in the GLTP domain were likely to be extremely detrimental mutations that inhibit the expression of the ACD11 protein domain by destabilizing its composition, as well as disrupt its catalytic effectiveness. When compared to the A15T mutant, the A39D mutant was more likely to destabilize the protein structure. In conclusion, these mutants can aid in the better understanding of the vast pool of PCD susceptibilities connected to ACD11 gene GLTP domain activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号