首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   29篇
  362篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   10篇
  2020年   11篇
  2019年   19篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   15篇
  2014年   28篇
  2013年   23篇
  2012年   32篇
  2011年   27篇
  2010年   14篇
  2009年   15篇
  2008年   23篇
  2007年   20篇
  2006年   16篇
  2005年   15篇
  2004年   15篇
  2003年   10篇
  2002年   9篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有362条查询结果,搜索用时 0 毫秒
21.
22.
AIMS: Isolation and characterization of chitinases from a halotolerant Bacillus pumilus. METHODS AND RESULTS: Bacillus pumilus strain SG2 was isolated from saline conditions. It is able to produce chitinase activity at high salt concentration. SDS-PAGE analysis of the B. pumilus SG2 culture supernatant showed two major bands that were induced by chitin. The amino acid sequence of the two proteins, designated ChiS and ChiL, showed a high homology with the chitinase of B. subtilis CHU26, and chitinase A of B. licheniformis, respectively. N-terminal signal peptide of both proteins was also determined. The molecular weight and isoelectric point of the chitinases were determined to be 63 and 74 kDa, and 4.5 and 5.1, for ChiS and ChiL respectively. The genes encoding for both chitinases were isolated and their sequence determined. The regulation of the chitinase genes is under the control of the catabolite repression system. CONCLUSIONS: Secreted chitinase genes and their flanking region on the genome of B. pumilus SG2 have been identified and sequenced. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of a multiple chitinases-producing B. pumilus halotolerant strain. We have identified two chitinases by using a reverse genetics approach. The chitinases show resistance to salt.  相似文献   
23.
24.
25.
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions.  相似文献   
26.
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.  相似文献   
27.
Guanine nucleotide exchange factors (GEFs) regulate the activity of small G proteins by catalysing the intrinsically slow exchange of GDP for GTP. The mechanism involves the formation of trimeric G protein-nucleotide-GEF complexes, followed by the release of nucleotide to form stable binary G protein-GEF complexes. A number of structural studies of G protein-GEF complexes have shown large structural changes induced in the nucleotide binding site. Together with a recent structure of a trimeric complex, these studies have suggested not only some common principles but also large differences in detail in the GEF-mediated exchange reaction. Several structures suggested that a glutamic acid residue in switch II, which is part of the DxxGQE motif and highly conserved in Ras-like G proteins, might have a decisive mechanistic role in GEF-mediated nucleotide exchange reactions. Here we show that mutation of the switch II glutamate to Ala severely impairs GEF-catalysed nucleotide exchange in most, but not all, Ras family G proteins, explaining its high sequence conservation. The residue determines the initial approach of GEF to the nucleotide-loaded G protein and does not appreciably affect the formation of a binary nucleotide-free complex. Its major effect thus appears to be the removal of the P-loop lysine from its interaction with the nucleotide.  相似文献   
28.
The basement membrane protein laminin-5 supports tumor cell adhesion and motility and is implicated at multiple steps of the metastatic cascade. Tetraspanin CD151 engages in lateral, cell surface complexes with both of the major laminin-5 receptors, integrins alpha3beta1 and alpha6beta4. To determine the role of CD151 in tumor cell responses to laminin-5, we used retroviral RNA interference to efficiently silence CD151 expression in epidermal carcinoma cells. Near total loss of CD151 had no effect on steady state cell surface expression of alpha3beta1, alpha6beta4, or other integrins with which CD151 associates. However, CD151-silenced carcinoma cells displayed markedly impaired motility on laminin-5, accompanied by unusually persistent lateral and trailing edge adhesive contacts. CD151 silencing disrupted alpha3beta1 integrin association with tetraspanin-enriched microdomains, reduced the bulk detergent extractability of alpha3beta1, and impaired alpha3beta1 internalization in cells migrating on laminin-5. Both alpha3beta1- and alpha6beta4-dependent cell adhesion to laminin-5 were also impaired in CD151-silenced cells. Reexpressing CD151 in CD151-silenced cells reversed the adhesion and motility defects. Finally, loss of CD151 also impaired migration but not adhesion on substrates other than laminin-5. These data show that CD151 plays a critical role in tumor cell responses to laminin-5 and reveal promotion of integrin recycling as a novel potential mechanism whereby CD151 regulates tumor cell migration.  相似文献   
29.
The specific and rapid formation of protein complexes is essential for diverse cellular processes such as remodeling of actin filaments in response to the interaction between Rho GTPases and the Wiskott-Aldrich syndrome proteins (WASp and N-WASp). Although Cdc42, TC10, and other members of the Rho family have been implicated in binding to and activating the WAS proteins, the exact nature of such a protein-protein recognition process has remained obscure. Here, we describe a mechanism that ensures rapid and selective long-range Cdc42-WASp recognition. The crystal structure of TC10, together with mutational and bioinformatic analyses, proved that the basic region of WASp and two unique glutamates in Cdc42 generate favorable electrostatic steering forces that control the accelerated WASp-Cdc42 association reaction. This process is a prerequisite for WASp activation and a critical step in temporal regulation and integration of WASp-mediated cellular responses.  相似文献   
30.
The conversion of guanosine triphosphate (GTP) to guanosine diphosphate (GDP) and inorganic phosphate (Pi) by guanine nucleotide-binding proteins (GNBPs) is a fundamental enzyme reaction in living cells that acts as an important timer in a variety of biological processes. This reaction is intrinsically slow but can be stimulated by GTPase-activating proteins (GAPs) by several orders of magnitude. In the present study, we synthesized and characterized a new fluorescent nucleotide, 2'(3')-O-(N-ethylcarbamoyl-(5'-carboxytetramethylrhodamine) amide)-GTP, or tamraGTP, which is sensitive towards conformational changes of certain GNBPs induced by GTP hydrolysis. Unlike other fluorescent nucleotides, tamra-GTP allows real-time monitoring of the kinetics of the intrinsic and GAP-catalyzed GTP hydrolysis reactions of small GNBPs from the Rho family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号