首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   37篇
  国内免费   1篇
  2024年   2篇
  2023年   7篇
  2022年   20篇
  2021年   25篇
  2020年   34篇
  2019年   58篇
  2018年   40篇
  2017年   28篇
  2016年   29篇
  2015年   21篇
  2014年   48篇
  2013年   63篇
  2012年   52篇
  2011年   48篇
  2010年   20篇
  2009年   25篇
  2008年   26篇
  2007年   31篇
  2006年   24篇
  2005年   10篇
  2004年   12篇
  2003年   17篇
  2002年   13篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   4篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有678条查询结果,搜索用时 93 毫秒
601.
602.
603.
604.
Hirschsprung's disease (HSCR) is a congenital disorder, defined by partial or complete loss of the neuronal ganglion cells in the intestinal tract, which is caused by the failure of neural crest cells to migrate completely during intestinal development during fetal life. HSCR has a multifactorial etiology, and genetic factors play a key role in its pathogenesis; these include mutations within several gene loci. These have been identified by screening candidate genes, or by conducting genome wide association (GWAS) studies. However, only a small portion of them have been proposed as major genetic risk factors for the HSCR. In this review, we focus on those genes that have been identified as either low penetrant or high penetrant variants that determine the risk of Hirschsprung's disease. J. Cell. Biochem. 119: 28–33, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
605.
Inspired by the realisation of the ability of graphene nanoribbon (GNR) based sensors to detect individual gas molecules, analytical approach based on the nearest neighbour tight-binding approximation is proposed to study the effect of gas adsorption on GNR electrical properties. Numerical calculations indicate that the electrical properties of the GNR are completely dependent on the adsorbed gas. Conductance as one of the most important electrical parameters as a sensing parameter is considered and analytically modelled. Additionally, gas adsorption effect on the conductance variation in the form of current-voltage characteristics is investigated which points out that gas adsorption dramatically influences electrical conductance of the GNR. Furthermore, to support the proposed analytical models, simulation study is carried out to investigate adsorption of O2 and NH3 gas molecules on the GNR surface. While, the charge transfer phenomenon that occurred as a result of molecular doping of the GNR is explored and the roll of band structure changes by adsorbents and their effects on the conductance and I-V characteristics of the GNRFET sensor is analysed. The comparison study with adopted experimental results is presented; also the I-V characteristics obtained from analytical modelling compared with the first principle calculations and close agreement is observed.  相似文献   
606.
Accumulating evidence suggests that microRNAs (miRNAs) contribute to a myriad of kidney diseases. However, the regulatory role of miRNAs on the key molecules implicated in kidney fibrosis remains poorly understood. Bone morphogenetic protein-7 (BMP-7) and its related BMP-6 have recently emerged as key regulators of kidney fibrosis. Using the established unilateral ureteral obstruction (UUO) model of kidney fibrosis as our experimental model, we examined the regulatory role of miRNAs on BMP-7/6 signaling. By analyzing the potential miRNAs that target BMP-7/6 in silica, we identified miR-22 as a potent miRNA targeting BMP-7/6. We found that expression levels of BMP-7/6 were significantly elevated in the kidneys of the miR-22 null mouse. Importantly, mice with targeted deletion of miR-22 exhibited attenuated renal fibrosis in the UUO model. Consistent with these in vivo observations, primary renal fibroblast isolated from miR-22-deficient UUO mice demonstrated a significant increase in BMP-7/6 expression and their downstream targets. This phenotype could be rescued when cells were transfected with miR-22 mimics. Interestingly, we found that miR-22 and BMP-7/6 are in a regulatory feedback circuit, whereby not only miR-22 inhibits BMP-7/6, but miR-22 by itself is induced by BMP-7/6. Finally, we identified two BMP-responsive elements in the proximal region of miR-22 promoter. These findings identify miR-22 as a critical miRNA that contributes to renal fibrosis on the basis of its pivotal role on BMP signaling cascade.  相似文献   
607.
Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.  相似文献   
608.
609.
Genotyping by sequencing (GBS) is the latest application of next-generation sequencing protocols for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. Unlike other high-density genotyping technologies which have mainly been applied to general interest “reference” genomes, the low cost of GBS makes it an attractive means of saturating mapping and breeding populations with a high density of SNP markers. One barrier to the widespread use of GBS has been the difficulty of the bioinformatics analysis as the approach is accompanied by a high number of erroneous SNP calls which are not easily diagnosed or corrected. In this study, we use a 384-plex GBS protocol to add 30,984 markers to an indica (IR64) × japonica (Azucena) mapping population consisting of 176 recombinant inbred lines of rice (Oryza sativa) and we release our imputation and error correction pipeline to address initial GBS data sparsity and error, and streamline the process of adding SNPs to RIL populations. Using the final imputed and corrected dataset of 30,984 markers, we were able to map recombination hot and cold spots and regions of segregation distortion across the genome with a high degree of accuracy, thus identifying regions of the genome containing putative sterility loci. We mapped QTL for leaf width and aluminum tolerance, and were able to identify additional QTL for both phenotypes when using the full set of 30,984 SNPs that were not identified using a subset of only 1,464 SNPs, including a previously unreported QTL for aluminum tolerance located directly within a recombination hotspot on chromosome 1. These results suggest that adding a high density of SNP markers to a mapping or breeding population through GBS has a great value for numerous applications in rice breeding and genetics research.  相似文献   
610.
The ladybird Hippodamia variegata Goeze is a widespread species found in many parts of the world. It is an efficient predator which feeds on a wide range of pests, specially aphids and other sap feeders. Mass rearing of this predator, in order to use in biological control programmes, entails a great deal of difficulties, among which are the aspects associated with nutrition. Applying artificial diets is of a great importance in mass rearing of biological control agents. We investigated the use of 15 artificial diets that included three separated experiments, in order to rear larval stages of this ladybird. The survival rate and developmental time were assessed on each treatment. The survival rate of the larvae on best diet was 53.30, 93.33, and 93.33% in different experiments. The developmental time in the experiment 1, 2 and 3 for the larva fed on the Aphis fabae was 15.59, 15.51 and 15.94, respectively, but when nourished by the best artificial diets, this factor was 26.59, 26.60 and 20.59, respectively. Developmental time for the larvae fed on A. fabae was significantly shorter than developmental time of larvae on artificial diets. Our results showed that artificial diets have the capacity to support the larval development to adulthood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号