首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   17篇
  国内免费   1篇
  681篇
  2024年   5篇
  2023年   7篇
  2022年   20篇
  2021年   25篇
  2020年   34篇
  2019年   58篇
  2018年   40篇
  2017年   28篇
  2016年   29篇
  2015年   21篇
  2014年   48篇
  2013年   63篇
  2012年   52篇
  2011年   48篇
  2010年   20篇
  2009年   25篇
  2008年   26篇
  2007年   31篇
  2006年   24篇
  2005年   10篇
  2004年   12篇
  2003年   17篇
  2002年   13篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   4篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有681条查询结果,搜索用时 15 毫秒
531.
532.
    
DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24?hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay.  相似文献   
533.
534.
535.
536.
537.
    
In the current study, Fe3O4 NPs were synthesized and used as catalysts in a sono-Fenton-like process for remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. The effects of operational variables were studied using central composite design (CCD) optimization approach. Results indicated that the effects of H2O2 concentration, Fe3O4 NPs dosage, ultrasonic power and pH were significant for pyrene removal as a contaminant model. In optimum experimental conditions, including H2O2 concentration of 78 mM, Fe3O4 NPs dosage of 18 mM, ultrasonic power of 313 W and pH value of 3.46, the observed pyrene removal was obtained 98.37%, which was verified through the additional experimental tests (99.33%). Pseudo first-order kinetic model was well fitted with the experimental data of pyrene removal with significant coefficient of correlation (R2: 0.9672). Accordingly, an unwashed real soil sample containing diffident PAHs (pyrene, flurene, acenaphthylene, phenenthrene, chrysene, etc) was subjected to sono-Fenton-like process based on optimized conditions. The obtained findings revealed that the removal (%) ranged between 37.7% and 85.19% for different PAHs.  相似文献   
538.
    

Extraordinary electrical and optical features of graphene-based materials attract researchers to improve sensing center of different sensors using them. In this research, the effects of sensing molecules on electro-optical features of graphene-based sensors are modeled. The adsorption effect on the Hamiltonian of the system based on tight-binding model is explored, and also the system band structure is investigated analytically. Then, refractive index deviations based on band gap variations are discovered which are used in response modeling of a graphene-based surface plasmon resonance (SPR) sensor.

  相似文献   
539.
    
Judicious choice of transport layer in organic–inorganic halide perovskite solar cells can be one of the essential parameters in photovoltaic design and fabrication techniques. This article reports the effect of optically generated dipoles in transport layer on the photovoltaic actions in active layer in perovskite solar cells with the architecture of indium tin oxide (ITO)/TiO x /CH3NH3PbI3–x Cl x /hole transport layer (HTL)/Au. Here, PTB7‐thieno[3,4‐b]thiophene‐alt‐benzodithiophene and P3HT‐poly(3‐hexylthiophene) are separately used as the HTL with significant and negligible photoinduced dipoles, respectively. Electric field‐induced photoluminescence quenching provides the first‐hand evidence to indicate that the photoinduced dipoles are partially aligned in the amorphous PTB7 layer under the influence of device built‐in field. By monitoring the recombination process through magneto‐photocurrent measurements under device operation condition, it is shown that the photoinduced dipoles in PTB7 layer can decrease the recombination of photogenerated carriers in the active layer in perovskite solar cells. Furthermore, the capacitance measurements suggest that the photoinduced dipoles in PTB7 can decrease charge accumulation at the electrode interface. Therefore, the studies indicate the important role of photoinduced dipoles in the HTL on charge recombination dynamics and provide a fundamental insight on how the polarization in transport layer can influence the device performance in perovskite solar cells.  相似文献   
540.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号