? Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. ? Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. ? We clearly observed increasing soil water contents (θ) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. ? Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of θ towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions. 相似文献
Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation. 相似文献
Atherosclerosis accounts for numerous cardiovascular diseases, and cytokines have a critical role in acceleration or suppression of disease. Salusin-α presents a new class of bioactive peptides that can have anti-atherogenic properties. Therefore, the effects of salusin-α on the expression of some pro- and anti-inflammatory cytokines and on TNF-α-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) were examined. The involvement of the NF-κB pathway in effects of salusin-α in HUVECs was checked using Bay 11-7082 as an NF-κB inhibitor. The mRNA expression of pro-inflammatory cytokines including IL-6, IL-8, and IL-18 and anti-inflammatory cytokine IL-1Ra was assessed by real-time PCR. The protein levels of cytokines were measured by the ELISA method. Salusin-α suppressed both mRNA and protein expression of pro-inflammatory cytokines and induced mRNA and protein expression of IL-1Ra in HUVECs. Salusin-α suppressed TNF-α-induced inflammatory responses in HUVECs. The down-regulatory or up-regulatory effects of salusin-α on expression of cytokines could not be influenced by Bay 11-7082 pretreatment. Our findings indicate anti-inflammatory effects of salusin-α and suggest a novel peptide-based therapeutic strategy for atherosclerosis. 相似文献
Association of Mycobacterium avium subspecies paratuberculosis (MAP) and Crohn’s disease (CD) has been controversial due to contradictory reports. Therefore, we determined the prevalence of MAP in patients with CD and intestinal tuberculosis (ITB) and its association with clinical course.
Methodology
Blood and intestinal biopsies were taken from 69 CD, 32 ITB patients and 41 patients with haemorrhoidal bleed who served as controls. qPCR targeting of MAP-specific IS900 gene was used to detect the presence of MAP DNA. qPCR results were further validated by sequencing. Immunohistochemistry (IHC) was used to detect the presence of MAP antigen in biopsy specimens. CD and ITB patients were followed-up for disease course and response to therapy.
Principal Findings
The frequency of MAP-specific DNA in biopsies by qPCR was significantly higher in CD patients (23.2%, p = 0.03) as compared to controls (7.3%). No significant difference in intestinal MAP presence was observed between ITB patients (12.5%, p = 0.6) and controls (7.3%). MAP presence in blood of CD patients was 10.1% as compared to 4.9% in controls while no patients with ITB were found to be positive (p = 0.1). Using IHC for detection of MAP antigen, the prevalence of MAP in CD was 2.9%, 12.5% in ITB patients and 2.4% in controls. However, long-term follow-up of the patients revealed no significant associations between clinical characteristics and treatment outcomes with MAP positivity.
Conclusion
We report significantly high prevalence of MAP in intestinal biopsies of CD patients. However, the presence of MAP does not affect the disease course and treatment outcomes in either CD or ITB patients. 相似文献
A series of aminoalkoxy phenyl-substituted naphthalene-1-yl-methanone was synthesized and tested for its anti-hyperglycemic activity in SLM and STZ-S rat models. Some compounds (3b, 4c and 4h) of the series were showing significant anti-hyperglycemic activity in male Sprague-Dawley rats in sucrose-loaded model (SLM) as well as in streptozotocin-induced model (STZ-S). Active compounds were also evaluated for relative binding affinity against glucagon receptor. 相似文献
In this paper the authors discuss the role of regulation in assuring blood safety. After an overview of the subject by a leading expert, examples are provided of regulatory systems for blood transfusion services in several countries and regions. Additionally, the perspective of WHO is given on the essential role of national regulatory authorities in assuring the quality of national blood programmes.Collectively, the sections of this paper afford an opportunity for readers to make comparisons among different regulatory frameworks and to "benchmark" among the existing systems. Despite many differences in approach, a clear pattern emerges of worldwide efforts to strengthen blood regulatory systems. 相似文献
HIV-1 envelope gp41 is a transmembrane protein that promotes fusion of the virus with the plasma membrane of the host cells required for virus entry. In addition, gp41 is an important target for the immune response and development of antiviral and vaccine strategies, especially when targeting the highly variable envelope gp120 has not met with resounding success. Mutations in gp41 may affect HIV-1 entry, replication, pathogenesis, and transmission. We, therefore, characterized the molecular properties of gp41, including genetic diversity, functional motifs, and evolutionary dynamics from five mother-infant pairs following perinatal transmission.
Results
The gp41 open reading frame (ORF) was maintained with a frequency of 84.17% in five mother-infant pairs' sequences following perinatal transmission. There was a low degree of viral heterogeneity and estimates of genetic diversity in gp41 sequences. Both mother and infant gp41 sequences were under positive selection pressure, as determined by ratios of non-synonymous to synonymous substitutions. Phylogenetic analysis of 157 mother-infant gp41 sequences revealed distinct clusters for each mother-infant pair, suggesting that the epidemiologically linked mother-infant pairs were evolutionarily closer to each other as compared with epidemiologically unlinked sequences. The functional domains of gp41, including fusion peptide, heptad repeats, glycosylation sites and lentiviral lytic peptides were mostly conserved in gp41 sequences analyzed in this study. The CTL recognition epitopes and motifs recognized by fusion inhibitors were also conserved in the five mother-infant pairs.
Conclusion
The maintenance of an intact envelope gp41 ORF with conserved functional domains and a low degree of genetic variability as well as positive selection pressure for adaptive evolution following perinatal transmission is consistent with an indispensable role of envelope gp41 in HIV-1 replication and pathogenesis. 相似文献
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes. 相似文献
Non-albicans Candida species and other rare yeasts have emerged as major opportunistic pathogens in fungal infections. Identification of opportunistic yeasts in developing countries is mainly performed by phenotypic assay, which are time-consuming and prone to errors. The aim of the present study was to evaluate PCR-RFLP as a routinely used identification technique for the most clinically important Candida species in Iran and make a comparison with a novel multiplex PCR, called 21-plex PCR. One hundred and seventy-three yeast isolates from clinical sources were selected and identified with sequence analysis of the D1/D2 domains of rDNA (LSU rDNA) sequencing as the gold standard method. The results were compared with those obtained by PCR-RFLP using MspI restriction enzyme and the 21-plex PCR. PCR-RFLP correctly identified 93.4% of common pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and P. kudriavsevii (=?C. krusei)) and was able to identify 45.5% of isolates of the uncommon yeast species compared to the D1/D2 rDNA sequencing. Compared with PCR-RFLP, all common Candida species and 72.7% of uncommon yeast species were correctly identified by the 21-plex PCR. The application of the 21-plex PCR assay as a non-sequence-based molecular method for the identification of common and rare yeasts can reduce turnaround time and costs for the identification of clinically important yeasts and can be applied in resource-limited settings.
Nineteen compounds of various classes, such as flavonoid glycosides, pterocarpanoids, lipids, glycolipids, and alkaloids, were isolated and identified from the Desmodium gangeticum whole plant. Aminoglucosyl glycerolipid (8) is reported here for the first time. Its structure has been elucidated by spectroscopic and degradation studies. This novel compound exhibited in vitro antileishmanial and immunomodulatory activities, as it enhanced nitric oxide (NO) production and provided resistance against infection established in peritoneal macrophages by the protozoan parasite Leishmania donovani. Another known compound, glycosphingolipid (cerebroside) (7) was found to possess significant in vitro antileishmanial and immunomodulatory activities against the same parasite. Other compounds were found to be inactive. 相似文献