首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6628篇
  免费   331篇
  国内免费   19篇
  2023年   75篇
  2022年   187篇
  2021年   390篇
  2020年   201篇
  2019年   333篇
  2018年   305篇
  2017年   223篇
  2016年   282篇
  2015年   330篇
  2014年   385篇
  2013年   564篇
  2012年   475篇
  2011年   477篇
  2010年   280篇
  2009年   239篇
  2008年   248篇
  2007年   238篇
  2006年   221篇
  2005年   182篇
  2004年   144篇
  2003年   117篇
  2002年   114篇
  2001年   63篇
  2000年   73篇
  1999年   54篇
  1998年   31篇
  1997年   20篇
  1996年   23篇
  1995年   20篇
  1994年   14篇
  1993年   20篇
  1992年   36篇
  1991年   51篇
  1990年   44篇
  1989年   34篇
  1988年   34篇
  1987年   42篇
  1986年   30篇
  1985年   39篇
  1984年   33篇
  1983年   21篇
  1982年   20篇
  1980年   15篇
  1979年   24篇
  1978年   24篇
  1977年   16篇
  1975年   14篇
  1974年   14篇
  1973年   21篇
  1968年   15篇
排序方式: 共有6978条查询结果,搜索用时 15 毫秒
901.
Arundo donax (giant reed) is an aggressive invasive weed of riparian habitats throughout the southern half of the United States from California to Maryland. Native to Asia, the species is believed to have been initially introduced into North America from the Mediterranean region although subsequent introductions were from multiple regions. To provide insight into the potential for biological control of A. donax, genetic variation in plants sampled from a wide geographical area in the United States was analyzed using Sequence Related Amplification Polymorphism (SRAP) and transposable element (TE)-based molecular markers. Invasive individuals from 15 states as well as four populations in southern France were genetically fingerprinted using 10 SRAP and 12 TE-based primer combinations. With the exception of simple mutations detected in four plants, A. donax exhibited a single multilocus DNA fingerprint indicating a single genetic clone. The genetic uniformity of invasive A. donax suggests that classical biological control of the species could be successful. A lack of genetic diversity in the invaded range simplifies identification of native source populations to search for natural enemies that could be used as biocontrol agents.  相似文献   
902.
Autosomal recessive hypotrichosis (LAH3) is a rare hair disorder characterized by sparse hair on scalp and the rest of the body of affected individuals. Recently mutations in a G protein-coupled receptor gene, P2RY5, located at LAH3 locus, have been reported in several families with autosomal recessive hypotrichosis simplex and woolly hair. For the present study, 22 Pakistani families with autosomal recessive hypotrichosis were enrolled. Genotyping using microsatellite markers linked to three autosomal recessive forms of hypotrichosis (LAH1, LAH2, LAH3) showed the linkage of 2 families to the LAH2 locus and 14 to the LAH3 locus. The remaining 6 families were not linked to any of the three loci. Families linked to LAH3 locus were further subjected to screening of the P2RY5 gene with direct DNA sequencing. Three previously reported variants, c.69insCATG (p.24insHfs52), c.188A > T (p.D63V) and c.565G > A (p.E189K) were observed in eight families. Four novel nonsynonymous sequence variants, c.8G > C (p.S3T), c.36insA (p.D13RfsX16), c.160insA (p.N54TfsX58) and c.436G > A (p.G146R) were found to segregate within six families. Z. Azeem, M. Jelani, G. Naz, M. Tariq, N. Wasif, S. Kamran-ul-Hassan Naqvi contributed equally to this work.  相似文献   
903.
Green leafy vegetable extracts of six genotypes of kale (Brassica oleracea acephala) were evaluated for ascorbic acid, carotenoids, total phenolics and antioxidant activity. Ascorbic acid ranged from 142 mg per 100 g in Wappal Hakh to 164 mg per 100 g fr wt in Knol khol. Wild genotypes Wappal and Pumb, had significantly high phenolic content (285 and 227 mg per 100 g fr wt) and possessed highest antioxidant activities (840 and 780 µmol FRAP per g fr wt) than cultivated genotypes. A positive and strong correlation (R2 = 0.807) between total phenolic content and antioxidant activity suggests that kale has enormous potential to enhance the antioxidant potential of our daily food supply. Wild genotypes, Wappal and Pumb can be incorporated into the breeding programmes in order to increase the antioxidant potential of cultivated varieties.  相似文献   
904.
Cyclodextrin glucanotransferase (CGTase) activity was observed when the bacterium was grown in the medium at various initial pH values, containing carbon, nitrogen, phosphorus and mineral salt sources at 50 °C for 24 h in the shake flasks. The optimisation of this growth medium was carried out using response surface methodology. The design contains a total of 32 experimental trials involving 10 star points and 6 replicates at the centre points. The design was employed by selecting sago starch, peptone from casein, K2HPO4, CaCl2 and initial pH as five independent variables in this study. The optimal calculated values of tested variables for maximal production of CGTase were found to be comprised of: sago starch, 16.02 g/l; peptone from casein, 20 g/l; K2HPO4, 1.4 g/l; CaCl2, 0.2 g/l and initial pH, 7.54 with a predicted CGTase activity of 14.20 U/ml. These predicted optimal parameters were tested in the laboratory and the final CGTase activity obtained was very close to the predicted value at 14.80 U/ml.  相似文献   
905.
Possible effects of interaction (cross-talk) between signaling pathways is studied in a system of Reaction-Diffusion (RD) equations. Furthermore, the relevance of spontaneous neurite symmetry breaking and Turing instability has been examined through numerical simulations. The interaction between Retinoic Acid (RA) and Notch signaling pathways is considered as a perturbation to RD system of axon-forming potential for N2a neuroblastoma cells. The present work suggests that large increases to the level of RA-Notch interaction can possibly have substantial impacts on neurite outgrowth and on the process of axon formation. This can be observed by the numerical study of the homogeneous system showing that in the absence of RA-Notch interaction the unperturbed homogeneous system may exhibit different saddle-node bifurcations that are robust under small perturbations by low levels of RA-Notch interactions, while large increases in the level of RA-Notch interaction result in a number of transitions of saddle-node bifurcations into Hopf bifurcations. It is speculated that near a Hopf bifurcation, the regulations between the positive and negative feedbacks change in such a way that spontaneous symmetry breaking takes place only when transport of activated Notch protein takes place at a faster rate.  相似文献   
906.
An efficient strategy for enhancing the lymph node deposition of rapidly drained liposomes from the interstitial injection site is described. Subcutaneously injected small-sized immuno-poly(ethyleneglycol)-liposomes (immuno-PEG-liposomes), containing 10 mol% mPEG350-phospholipid and 1 mol% PEG2000-phospholipid in their bilayer and where IgG1 is coupled to the distal end of PEG2000, not only drain rapidly from the interstitial spaces into the initial lymphatic system, but also accumulate efficiently among the lymph nodes draining the region when compared with non-PEG-bearing immunoliposomes where IgG is directly coupled to the phospholipid. Liposome deposition among the draining lymph nodes, however, was further enhanced dramatically following an adjacent subcutaneous injection of a pentameric IgM against the surface attached IgG molecules (IgM:IgG, 10:1) without compromising vesicle drainage from the interstitium. This is suggested to arise either as a result of formation of large immuno-aggregates within the lymphatic vessels with subsequent transport to and trapping among the regional lymph nodes and/or following IgM binding to Fc receptors of the lymph node sinus macrophages forming a platform for subsequent trapping of drained IgG-coupled liposomes. This lymph node targeting approach may be amenable for the design and surface engineering of any rapidly drained nanoparticulate system bearing peptides and proteins that can be aggregated with a desired monoclonal pentameric IgM.  相似文献   
907.
Resistin, a small secreted peptide initially identified as a link between obesity and diabetes in mice, was shown to be involved in mediating inflammation in humans. We had shown earlier that recombinant human resistin has a tendency to form aggregates by formation of inter/intramolecular disulfide linkages and that it undergoes a concentration-dependent conformational change in secondary structure from alpha-helical to beta-sheet form. Here we report that this change in secondary structural conformation is due to the increase in the oligomeric form of human resistin as a function of protein concentration. Gel filtration analysis under different conditions further demonstrated that recombinant human resistin exists as a mixture of oligomer and trimer but is converted to a mixture of monomer and oligomer in the presence of 100 mM NaCl. We show that while the trimeric form of human resistin is stable to urea-induced denaturation, it is highly susceptible to NaCl and NaF, indicating the importance of ionic interactions in stabilization of trimer. In addition, urea was able to destabilize the oligomers indicating the involvement of hydrophobic interactions in oligomerization. Ionic as well as hydrophobic interactions stabilize the monomeric human resistin. Our data suggest that human resistin exists predominantly as oligomer and trimer in vitro. The oligomeric form of human resistin shows more potent effect on stimulation of proinflammatory cytokines. Therefore, it is very tempting to propose that the structural conformation of resistin may be involved in maintaining the very fine balance in regulation of macrophage function for successful response to a variety of pathological conditions.  相似文献   
908.
Ashraf  M.  Ahmad  Ashfaq  McNeilly  T. 《Photosynthetica》2001,39(3):389-394
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg–1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (P N), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on P N was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply.  相似文献   
909.
Thirty-day-old plants of mustard (Brassica juncea L.) were sprayed with 10−10, 10−8, or 10−6 M aqueous solution of 28-homobrassinolide (HBR). The HBR-treated plants were healthier than those treated with water and yielded more. Maximum increase over control was found in 60-d-old, 10−8 M-HBR-treated plants in fresh and dry mass per plant, carbonic anhydrase (CA, E.C. 4.2.1.1) activity, and net photosynthetic rate (P N), at harvest in number of pods per plant and seed yield per plant (the respective values were 25, 30, 34, 69, 24, and 29 %). A further increase in the concentration of HBR (10−6 M) did not make any additional impact on the growth and yield. Increased CA activity and P N were correlated with growth and seed yield. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
910.
The present investigation has been performed to evaluate nitrate reductase (NR) and nitrogenase activities as well as growth and mineral nutrition of wheat plants grown under drought stress and inoculated with different Azospirillum strains (NR and NR+). Fresh, dry mass and water content decreased with decreasing soil moisture content, which was accompanied with low soluble sugars and soluble protein content and increase in the total amino acids content. Azospirillum inoculation with either bacterial strain (NR and NR+) significantly increased the above characteristics even at 40 % moisture content. NR activity decreased in both the shoots and roots by decreasing soil moisture content. NR+ strain exhibited increased root NR activity compared with uninoculated plants or inoculated with NR strain. However, plants inoculated with NRstrain increased NR activity in the shoot more than in the root of the same plant and in the shoot of control plants. Inoculation with either NR and NR+ Azospirillum strains gave higher nitrogenase activity than uninoculated control plants. The low N supply (0.5 mM) did not affect nitrogenase activity. NRstrain was less effective than NR+strain in promoting total N-yield, spike numbers and their mass per pot. Azospirillum inoculation exhibited no significant changes in wheat Mg2+ content. However, K+ and Ca2+ have shown significantly increased values. Azospirillum beneficial effect on plant N balance and growth are most probably composed of multiple mechanisms and beneficial NR is one of them. The importance of Azospirillum NR+strains for increasing wheat resistance to water stress is also supported by the obtained data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号