首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  96篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   12篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2003年   2篇
  2002年   2篇
  1983年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
21.
22.
23.
To investigate key regulatory components and genes with great impact on salt tolerance, near isogenic or mutant lines with distinct salinity tolerance are suitable genetic materials to simplify and dissect the complex genes networks. In this study, we evaluated responses of a barley mutant genotype (73-M4-30), in comparison with its wild-type background (Zarjou) under salt stress. Although the root growth of both genotypes was significantly decreased by exposure to sodium chloride (NaCl), the effect was greater in the wild type. The chlorophyll content decreased under salt stress for the wild type, but no change occurred in the mutant. The mutant maintained the steady-state level of [K+] and significantly lower [Na+] concentrations in roots and higher [K+]/[Na+] ratio in shoots under salt conditions. The catalase (CAT), peroxidase (POD) activity, and proline content were higher in the mutant than those in the wild type under controlled conditions. The soluble proline was higher after 24 h of salt stress in roots of the mutant but was higher after 96 h of salt stress in the wild type. The CAT and POD activity of the mutant increased under salt stress which was as a coincidence to lower levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. The ratio of dry-to-fresh weight of the roots increased for the mutant under salt stress which was as a result of the higher phenylalanine ammonia-lyase (PAL) gene expression and peroxidase activity and involved in cell wall lignification. Consequently, it seems that ion homeostasis and increased peroxidase activity have led to salt tolerance in the mutant’s genotype.  相似文献   
24.
Functional response is basic to any investigation of predator–prey relationships. In this study, the functional response of female Scymnus syriacus Marseul (Col.: Coccinellidae) to different densities (10, 20, 40, 60, 80, 100) of third instar nymphs of Aphis gossypii Glover as prey was studied in an open patch experiment in a growth chamber (25 °C, 65 ± 5% RH and a photoperiod of 16L:8D h ). Using logistic regression, a type II functional response for female Scymnus syriacus was determined. The searching efficiency (a') and handling time (Th) of the female predator using non linear least-square regression were estimated as 0.0769 ± 0.0136 h? 1 and 0.3103 ± 0.0438 h., respectively. Mean times required for the female predator to settle in a patch were 10.20 ± 4.28, 6.58 ± 2.58, 12.58 ± 4.50, 4.53 ± 1.48, 5.14 ± 2.59, 3.87 ± 3.52 min at different prey densities, respectively. Maximum theoretical predation rate (T/Th) estimated by Rogers' model for the female predator was 77.34. The proportion of female predators remaining in open patches at the end of the experiment was dependent on prey density (R2 = 0.876). The type of functional response obtained here agrees with studies on this predator in closed patches.  相似文献   
25.
26.
The cellular and molecular environment present in the fetus and early newborn provides an excellent opportunity for effective gene transfer. Innate and pre-existing anti-vector immunity may be attenuated or absent and the adaptive immune system predisposed to tolerance towards xenoproteins. Stem cell and progenitor cell populations are abundant, active and accessible. In addition, for treatment of early lethal genetic diseases of the nervous system, the overarching advantage may be that early gene supplementation prevents the onset of irreversible pathological changes. Gene transfer to the fetal mouse nervous system was achieved, albeit inefficiently, as far back as the mid-1980s. Recently, improvements in vector design and production have culminated in near-complete correction of a mouse model of spinal muscular atrophy. In the present article, we review perinatal gene transfer from both a therapeutic and technological perspective.  相似文献   
27.
BACKGROUND: Ultrasound/microbubble-mediated gene delivery has the potential to be targeted to tissue deep in the body by directing the ultrasound beam following vector administration. Application of this technology would be minimally invasive and benefit from the widespread clinical experience of using ultrasound and microbubble contrast agents. In this study we evaluate the targeting ability and spatial distribution of gene delivery using focused ultrasound. METHODS: Using a custom-built exposure tank, Chinese hamster ovary cells in the presence of SonoVue microbubbles and plasmid encoding beta-galactosidase were exposed to ultrasound in the focal plane of a 1 MHz transducer. Gene delivery and cell viability were subsequently assessed. Characterisation of the acoustic field and high-resolution spatial analysis of transfection were used to examine the relationship between gene delivery efficiency and acoustic pressure. RESULTS: In contrast to that seen in the homogeneous field close to the transducer face, gene delivery in the focal plane was concentrated on the ultrasound beam axis. Above a minimum peak-to-peak value of 0.1 MPa, transfection efficiency increased as acoustic pressure increased towards the focus, reaching a maximum above 1 MPa. Delivery was microbubble-dependent and cell viability was maintained. CONCLUSIONS: Gene delivery can be targeted using focused ultrasound and microbubbles. Since delivery is dependent on acoustic pressure, the degree of targeting can be determined by appropriate transducer design to modify the ultrasound field. In contrast to other physical gene delivery approaches, the non-invasive targeting ability of ultrasound makes this technology an attractive option for clinical gene therapy.  相似文献   
28.
29.
30.
Selenium supplementation still enhanced the immune response even in individuals who, according to current standards, would be considered as not being overtly selenium deficient. Mast cells are granulated cells that play a pivotal role in allergic reactions. In this study, we investigated the modulatory effect of sodium selenite on mediator release and degranulation of murine mast cell line (MC/9). Cells were pre-treated with selenium selenite (1, 2, 3 μg/ml) for 24 h and controls left untreated. Then, cells were sensitized overnight with anti-dinitrophenyl (DNP) IgE and challenged with DNP/HSA for degranulation induction. The histamine and prostaglandin D2 (PGD2) were measured by ELISA, and β-hexosaminidase was measured by spectrophotometery method. Selenium-treated cells revealed significant decrease in concentration of PGD2 (P?=?0.019) and β-hexosaminidase (P?=?0.009). In addition, a slight reduction of histamine release by the selenium-treated cells was observed, based on our intracellular and extracellular assessments. The most inhibitory effect of selenium supplementation on mediator release of MC/9 cells was obtained in the presence of 3 μg/ml of sodium selenite. The results of the present study demonstrate beneficial effects of supplemental selenium in attenuating clinical manifestations of allergy and asthma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号