首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  96篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   12篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   2篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2003年   2篇
  2002年   2篇
  1983年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
11.
A deterministic bio-economic model was used to estimate the economic values of different traits in Arabic sheep native to the Khuzestan province of Iran. In the studied system, variable costs accounted for about 98.5% of the total costs and among variable costs, feed costs had the highest proportion with 70.7%. Revenue sources included meat, wool, and manure, where meat was the most important one and formed 95.5% of total revenues. Economic value for a trait was estimated as the amount of change in the profit of system as its mean increased by one unit, while the means of other traits were constant. The most important trait in this system was litter size, followed by ewe survival, dressing percentage, and wool weight, respectively. Birth weight had a negative economic value but weight at older ages especially weaning weight and 12-month weight had positive economic values. The sensitivity of economic values of traits was investigated by changing feed and non-feed costs, meat and wool prices by ±10%. Results showed that economic values for dressing percentage and wool weight are not sensitive to change in costs. In addition, changes in marketing and management costs had no effect on the economic value for traits related to body weight in different ages. In general, the economic value for traits which showed sensitivity to the changes of costs, except ewe survival, decreased due to an increase in costs. The economic value for all traits, except birth and wool weight, changed because of a change in meat price. Increasing meat price meant a higher economic importance. Among different factors, meat price fluctuations had the most effect on the economic value of traits.  相似文献   
12.
The polymorphic gene of serum paraoxonase (PON1) and its activity involved in atherosclerosis. The purpose of the study was to analyze PON1 192 Q/R polymorphism and the enzyme activities in ischemic stroke. The polymorphism as the most common polymorphism in PON1 gene coding sequence is associated with variation in the enzyme activity and vascular disease. The study included 85 stroke patients and 71 control subjects. PON1 192 polymorphism was genotyped using PCR protocol. Paraoxonase activity (Para) and arylesterase activity (Aryl) were determined spectrophotometrically using paraoxon and phenylacetate as the substrates. The QR and RR genotypes were more frequent in stroke population compared to controls, resulting in a higher frequency of the R allele in patients (0.24 vs 0.18, OR?=?1.41). Patients had significantly higher Para/Aryl ratio than that of controls (P?=?0.016). In stroke patients, Para/Aryl and Para/HDL ratios increased with this order: QQ?<?QR?<?RR. Hypertension significantly increased the risk of ischemic stroke by 15-fold among R-containing people, while this was significantly increased 4-fold for QQ homozygotes. Smoking increased the risk of having ischemic stroke in both QQ homozygote and QR?+?RR group (OR?=?2.84 and OR?=?2.33, respectively). In conclusion, these data highlight the importance of PON1 192 R allele and high Para/Aryl ratio in susceptibility to ischemic stroke in the population. The presence of the 192 R allele potentiates the risk of stroke especially in hypertensive people. Decreased Aryl and increased Para/Aryl, Para/HDL and Aryl/HDL ratios may be markers indicated the increased susceptibility to ischemic stroke in the population.  相似文献   
13.
Abstract

Hexachlorocyclohexane (HCH), a highly chlorinated pesticide, was used worldwide in the 1950s and 1960s. HCH toxic residues are still detected in environmental compartments. Thus, effective, viable and eco-friendly strategy is required for its remediation. In this study, degradation of four HCH isomers was evaluated by amending contaminated soil using four treatments of spent mushroom compost (SMC) of Pleurotus ostraetus. The soil was incubated for 5 weeks and was sampled every seven days. Quantitative attenuation in HCH was calculated using gas chromatography–electron capture detector (GC-ECD) and metabolite was identified using gas chromatography–mass selective detector (GC-MSD). Maximum reduction 58%, 26%, 45%, and 64% for α-, β-, γ- and δ-HCH isomers, respectively, using SMC and soil (both unsterilized) showed that this treatment was the best for bioremediation of HCH in soil. However, when one of the factors, either soil or SMC, was sterilized, a significant reduction in HCH degradation was noticed. The second most reduction of isomers was seen during treatment where unsterilized SMC was added in sterilized soil followed by treatment where SMC was sterilized but soil was not. Abiotic control did not remove any significant quantities of HCH. Simple first-order (SFO) kinetic confirmed that SMC reduced the half-live manifolds as compared to biotic control. Only one metabolite δ-PCCH was identified during the course of study.  相似文献   
14.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   
15.
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.  相似文献   
16.
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (kinact). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5–6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.  相似文献   
17.
A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T‐DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, α‐tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus‐end marker GFP–EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell‐to‐cell movement of TMV encoding GFP‐tagged movement protein (MP‐GFP) is reduced in ATER2 accompanied by a reduced association of MP‐GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.  相似文献   
18.
Rahim A  Coutelle C  Harbottle R 《BioTechniques》2003,35(2):317-20, 322, 324
Gene therapy clinical trials have highlighted the importance of specific cellular/tissue targeting of gene delivery vectors. Phage display libraries are powerful tools for the selection of novel peptide ligands as targeting moieties because of their high-throughput screening potential. However, a severe rate-limiting step in this procedure in terms of time, numbers, and cost is the sequence identification of selected phages. Here we describe the application of Pyrosequencing technology for sequencing phage isolates after panning a random 7-mer peptide expressing phage library against the A549 bronchial epithelial cell line to search for enrichment of possible targeting peptides. Pyrosequencing allows sequencing of 96 phages at one time in approximately 45 min at only a sixth of the cost of conventional sequencing methods. Using this technology, we have identified four sequences of interest. A phage binding assay revealed that three of the four sequences show a significant increase in binding abilities and specificity for A549 cells when compared to an unrelated cell line.  相似文献   
19.
Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large‐scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon‐based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor‐based integration strategy where corrugation architecture enables ultraflexible and low‐cost solar cell modules from bulk monocrystalline large‐scale (127 × 127 cm2) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 µm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon‐based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 µm of the back contacts is shown that carries the solar cells segments.  相似文献   
20.
Molecular Biology Reports - One of the major barriers in cancer therapy is the resistance to conventional therapies and cancer stem cells (CSCs) are among the main causes of this problem. CD133 as...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号