首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   11篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   9篇
  2014年   9篇
  2013年   9篇
  2012年   12篇
  2011年   10篇
  2010年   20篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1987年   6篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1971年   2篇
  1925年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
111.
112.
Carter  D. A.  Bray  G. M.  Aguayo  A. J. 《Brain Cell Biology》1998,27(3):187-196
Regenerated retinal ganglion cell (RGC) axons can re-form functional synapses with target neurons in the superior colliculus (SC). Because preterminal axon branching determines the size, shape and density of innervation fields, we investigated the branching patterns and bouton formation of individual RGC axons that had regrown along peripheral nerve (PN) grafts to the SC. Within the superficial layers of the SC, the regenerated axons formed terminal arbors with average numbers of terminal boutons that were similar to the controls. However, axonal branches were shorter than normal so that the mean area of the regenerated arbors was nearly one-tenth that of control arbors and the resulting fields of innervation contained greater than normal numbers of synapses concentrated in small areas of the target. Our results have delineated a critical defect in the reconstitution of retino-collicular circuitry in adult mammals: the failure of terminal RGC branches to expand appropriately. Because recent studies have documented that brain-derived neurotrophic factor (BDNF) can specifically lengthen RGC axonal branches not only during development in the SC but also within the adult retina after axotomy, the present quantitative studies should facilitate experimental attempts to correct this deficit of the regenerative response. © 1998 Chapman and Hall  相似文献   
113.
Retinal ganglion cell (RGC) survival and neurite outgrowth were investigated in retinal explants from adult rats. Neutrotrophin-4/5 (NT-4/5) caused dose-dependent increases in neurite outgrowth with one-half maximal effects at approximately 0.5 ng/ml and maximal effects at 5 ng/ml. In explants treated for 7 days, the actions of NT-4/5 were similar to those of brain-derived neurotrophic factor (BDNF); with either neurotrophin, nearly twice as many RGCs survived and there was a two- to threefold increase in the number of neurites formed by RGCs. Combinations of saturating concentrations of NT-4/5 and BDNF did not enhance these in vitro effects, implying that both neurotrophins share a common signaling pathway. In contrast, nerve growth factor (NGF), neurotrophin-3 (NT-3), or ciliary nuerotrophic factor (CNTF) appeared to exert minimal influences on RGC survival or neurite outgrowth. 1994 John Wiley & Sons, Inc.  相似文献   
114.
115.
ABSTRACT

In domestic sheep Ovis aries, the mother and the young display a preferential bond for each other that relies on multimodal inter-individual recognition. Lambs show a preference for their own dam shortly after birth, and this is important for their survival. The role of acoustic cues in this early preference for the mother is not clear. The aim of the present work was to analyze the timing of acoustic recognition of the mother and to identify the physical parameters used in the recognition of maternal bleats by the lamb.

In a first study, we investigated the ability of lambs to discriminate between the bleats of their own mother and an alien equivalent mother in a two-choice test. Both ewes were hidden behind a canvas sheet and lambs were not allowed to approach the dams closer than 1 m, thus preventing visual as well as olfactory perception. Tests were conducted 12 hr, 24 hr or 48 hr after birth (n=19 or 20/group). An indication of vocal discrimination was already present at 24 hr and at 48 hr lambs spent significantly more time near their mother than near the alien dam.

In a second step, we investigated which physical parameters of the bleats were important for recognition. For this, we conducted playback experiments with modified bleats at two weeks postpartum. Ours results show that lambs pay attention to a combination of various time, energy and frequency parameters: timbre (distribution of energy within the spectrum), amplitude and frequency modulations appear to be the most important parameters encoding the individual signature.

We conclude that vocal recognition between the ewe and her lamb plays an important role in the display of preferential mother-young bond from very early on. Our studies also demonstrate that the encoding of the individual signature is not limited to the frequency domain but rather involves a multiparametric encoding process.  相似文献   
116.
In this study, we describe a novel form of anti-homeostatic plasticity produced after culturing spinal neurons with strychnine, but not bicuculline or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Strychnine caused a large increase in network excitability, detected as spontaneous synaptic currents and calcium transients. The calcium transients were associated with action potential firing and activation of gamma-aminobutyric acid (GABA(A)) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as they were blocked by tetrodotoxin (TTX), bicuculline, and CNQX. After chronic blockade of glycine receptors (GlyRs), the frequency of synaptic transmission showed a significant enhancement demonstrating the phenomenon of anti-homeostatic plasticity. Spontaneous inhibitory glycinergic currents in treated cells showed a fourfold increase in frequency (from 0.55 to 2.4 Hz) and a 184% increase in average peak amplitude compared with control. Furthermore, the augmentation in excitability accelerated the decay time constant of miniature inhibitory post-synaptic currents. Strychnine caused an increase in GlyR current density, without changes in the apparent affinity. These findings support the idea of a post-synaptic action that partly explains the increase in synaptic transmission. This phenomenon of synaptic plasticity was blocked by TTX, an antibody against brain-derived neurotrophic factor (BDNF) and K252a suggesting the involvement of the neuronal activity-dependent BDNF-TrkB signaling pathway. These results show that the properties of GlyRs are regulated by the degree of neuronal activity in the developing network.  相似文献   
117.
118.
Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2–25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.  相似文献   
119.

Background  

RNA interference (RNAi) emerges as a powerful tool to induce loss-of-function phenotypes. In the context of the brain, gene manipulation is best targeted to specific subsets of cells in order to achieve a physiologically relevant outcome. Polymerase II-based viral expression systems can be used to cell-specifically express constructs incorporating flanking and loop sequences from endogenous microRNA (miRNA), which directs the designed hairpins into the endogenous gene silencing machinery. While many studies have documented non-cell-selective gene knock-down in the brain, it has not been tested whether different cell types or different areas of the central nervous system (CNS) are equally amenable to this approach. We have evaluated this issue using a tetracycline (Tet)-controllable and cell-specific miRNA 30 (miR30)-based short hairpin (shRNA) interference system.  相似文献   
120.

Background

The aetiology of central nervous system lesions observed in cerebral cyclosporine neurotoxicity remains controversial.

Case presentation

We report a 48-year-old woman with a non-severe aplastic anaemia who presented with stroke-like episodes while on cyclosporine treatment.Transcranial Doppler ultrasound revealed severely elevated flow velocities in several cerebral vessels, consistent with vasospasm. Immediately after reducing the cyclosporine dose, the stroke-like episodes disappeared. Only after cyclosporine withdrawal the transcranial Doppler ultrasound abnormalities fully resolved.

Conclusions

This case demonstrates a significant role of vasospasm in the pathway of cyclosporine-induced neurotoxicity. Transcranial Doppler ultrasound is an effective tool for the diagnosis and follow-up of cyclosporine-induced vasospasm.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号