首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1397篇
  免费   93篇
  2023年   10篇
  2022年   16篇
  2021年   28篇
  2020年   20篇
  2019年   26篇
  2018年   23篇
  2017年   17篇
  2016年   39篇
  2015年   45篇
  2014年   56篇
  2013年   85篇
  2012年   87篇
  2011年   76篇
  2010年   53篇
  2009年   54篇
  2008年   64篇
  2007年   70篇
  2006年   77篇
  2005年   54篇
  2004年   47篇
  2003年   57篇
  2002年   48篇
  2001年   45篇
  2000年   43篇
  1999年   31篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   11篇
  1992年   19篇
  1991年   16篇
  1990年   21篇
  1989年   31篇
  1988年   10篇
  1987年   15篇
  1986年   13篇
  1985年   11篇
  1984年   8篇
  1983年   13篇
  1982年   9篇
  1981年   11篇
  1979年   12篇
  1978年   6篇
  1977年   9篇
  1976年   12篇
  1975年   11篇
  1970年   6篇
  1968年   8篇
  1966年   5篇
排序方式: 共有1490条查询结果,搜索用时 15 毫秒
991.
Secreted proteins control a multitude of biological and physiological processes in multicellular organisms such as plants. Identification of secreted proteins in reference plants like Arabidopsis and rice under normal growth conditions and adverse environmental conditions will help better understand the secretory pathways. Here, we have performed a systematic in planta and in vitro analyses of proteins secreted by rice leaves (in planta) and seed callus suspension-cultured cells (SCCs; in vitro), respectively, using a combination of biochemical and two-dimensional gel electrophoresis (2-DGE) coupled with liquid chromatography mass spectrometry analyses. Secreted proteins prepared from either leaves or SCCs medium were essentially free from contamination of intracellular proteins as judged by biochemical and Western blot analyses. 2-DGE analyses of secreted proteins collectively identified 222 protein spots with only 6 protein spots common to both in planta and in vitro derived data sets. Data were used to establish high-resolution and high-density 2-D gel reference maps for both in planta and in vitro secreted proteins. Identified proteins belonged to 11 (in planta) and 6 (in vitro) functional classes. Proteins involved in carbon metabolism (33%) and cell wall metabolism having plant defense mechanism (18%) were highly represented in the in planta secreted proteins accounting for 51% of total identified proteins, whereas proteins of cell wall metabolism having plant defense mechanism (64%) were predominant in the in vitro secreted proteins. Interestingly, secreted proteins possessing signal peptides were significantly lower in an in planta (27%) prepared secreted protein population than in vitro (76%) as predicted by SignalP prediction tool, implying the notion that plant might possess yet unidentified secretory pathway(s) in addition to the classical endoplasmic reticulum/Golgi pathway. Taken together, this systematic study provides evidence for (i) significant difference in protein population secreted in planta and in vitro suggesting both approaches are complementary, (ii) identification of many novel and previously known secreted proteins, and (iii) the presence of large number of functionally diverse proteins secreted in planta and in vitro.  相似文献   
992.
Baeyer–Villiger oxidation of 5-aryl-7,11,11-trimethyltricyclo[5.4.0.03,6]-undec-1-en-4-ones 4ah by H2O2 and formic acid in methanol yields mixtures of 3b,7,7-trimethyl-3-phenyl-3,3a,3b,4,5,6,7,8a-octahydro-1H-indeno-[1,2-c]furan-1-ones 8ah and 3b,7,7-trimethyl-3-phenyl-3,3a,3b,4,5,6,7,8a-octahydro-1H-indeno-[1,2-c]furan-2-ones 9ah in high yields. The obtained butyrolactones 8ah display cytotoxic activity against a number of human cancer cells.  相似文献   
993.
Profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC–MS/MS). Two-dimensional gels stained with silver nitrate revealed a total of 457, 516, 556, and 530 protein spots in NM Valencia C, Tamspan 90, Georgia Green, and NC-7, respectively. Twenty abundant protein spots showing differences in relative abundance among these cultivars were analyzed by nESI-LC–MS/MS, resulting in identification of 14 non-redundant proteins. The majority of these proteins belonged to the globulin fraction consisting of arachin (glycinin and Arah3/4) and conarachin seed storage proteins as well as other allergen proteins. The expression of some of these identified protein spots was cultivar-specific. For example, allergen Arah3/Arah4 and conarachin protein spots were only detected in Tamspan 90 and NC-7, whereas the Gly1 protein spot was detected only in NM Valencia C and NC-7. Moreover, a galactose-binding lectin protein spot with anti-nutritive properties was only present in Tamspan 90. Other proteins showing differences in relative abundance among the four cultivars included 13-lipoxygenase, fructose-biphosphate aldolase, and glyceraldehyde 3-phosphate dehydrogenase. Together, these results suggest that identified proteins might serve as potential markers for cultivar differentiation and may be associated with underlying sensory and nutritional traits of peanut cultivars.  相似文献   
994.
To better understand the metabolic processes of seed filling in soybean (Glycine max), two complementary proteomic approaches, two-dimensional gel electrophoresis (2-DGE) and semicontinuous multidimensional protein identification technology (Sec-MudPIT) coupled with liquid chromatography-mass spectrometry, were employed to analyze whole seed proteins at five developmental stages. 2-DGE and Sec-MudPIT analyses collectively identified 478 nonredundant proteins with only 70 proteins common to both datasets. 2-DGE data revealed that 38% of identified proteins were represented by multiple 2-DGE species. Identified proteins belonged to 13 (2-DGE) and 15 (Sec-MudPIT) functional classes. Proteins involved in metabolism, protein destination and storage, and energy were highly represented, collectively accounting for 61.1% (2-DGE) and 42.2% (Sec-MudPIT) of total identified proteins. Membrane proteins, based upon transmembrane predictions, were 3-fold more prominent in Sec-MudPIT than 2-DGE. Data were integrated into an existing soybean proteome database (www.oilseedproteomics.missouri.edu). The integrated quantitative soybean database was compared to a parallel study of rapeseed (Brassica napus) to further understand the regulation of intermediary metabolism in protein-rich versus oil-rich seeds. Comparative analyses revealed (1) up to 3-fold higher expression of fatty acid biosynthetic proteins during seed filling in rapeseed compared to soybean; and (2) approximately a 48% higher number of protein species and a net 80% higher protein abundance for carbon assimilatory and glycolytic pathways leading to fatty acid synthesis in rapeseed versus soybean. Increased expression of glycolytic and fatty acid biosynthetic proteins in rapeseed compared to soybean suggests that a possible mechanistic basis for higher oil in rapeseed involves the concerted commitment of hexoses to glycolysis and eventual de novo fatty acid synthesis pathways.  相似文献   
995.
The formation of low-density lipoprotein (LDL) cholesterol-loaded macrophage foam cells contributes to the development of atherosclerosis. C-reactive protein (CRP) binds to atherogenic forms of LDL, but the role of CRP in foam cell formation is unclear. In this study, we first explored the binding site on CRP for enzymatically modified LDL (E-LDL), a model of atherogenic LDL to which CRP binds. As reported previously, phosphocholine (PCh) inhibited CRP-E-LDL interaction, indicating the involvement of the PCh-binding site of CRP in binding to E-LDL. However, the amino acids Phe66 and Glu81 in CRP that participate in CRP-PCh interaction were not required for CRP-E-LDL interaction. Surprisingly, blocking of the PCh-binding site with phosphoethanolamine (PEt) dramatically increased the binding of CRP to E-LDL. The PEt-mediated enhancement in the binding of CRP to E-LDL was selective for E-LDL because PEt inhibited the binding of CRP to another PCh-binding site-ligand pneumococcal C-polysaccharide. Next, we investigated foam cell formation by CRP-bound E-LDL. We found that, unlike free E-LDL, CRP-bound E-LDL was inactive because it did not transform macrophages into foam cells. The function of CRP in eliminating the activity of E-LDL to form foam cells was not impaired by the presence of PEt. Combined data lead us to two conclusions. First, PEt is a useful compound because it potentiates the binding of CRP to E-LDL and, therefore, increases the efficiency of CRP to prevent transformation of macrophages into E-LDL-loaded foam cells. Second, the function of CRP to prevent formation of foam cells may influence the process of atherogenesis.  相似文献   
996.
997.
Since the radiation dose tolerance of normal tissues/organs away from the site of tumor influences the success of radiation therapy of cancer, and antioxidant status is likely to be one of the factors to determine the tolerance; the radioresponse of antioxidant enzymes has been examined in the liver as a representative distant organ in the tumorbearing mice.Swiss albino male mice (7–8 weeks old) with Ehrlich solid tumor in the thigh pad were irradiated with different doses of radiation (0–9 Gy) at a dose rate of 0.0153 Gy/s and the specific activities of enzymes involved in the free radical metabolism were determined in the liver. Except GST, the activities of SOD, DTD and Gly I as well as the GSH content were found to be higher in the liver of tumorbearing mice compared to the nontumor bearing mice. The catalase activity progressively decreased with dose in both the groups of mice. However, the activity was relatively higher in the liver of tumor bearing mice than the control. Thus, the radioresponse of antioxidant enzymes seemed to be significantly different in the liver of tumorburdened mice compared to controls. The enhanced activities might be due to relatively more damage caused by radiation. The higher levels of NO· and peroxidative damage in the liver of tumorbearing mice probably suggest this possibility. These findings of the present work might have some serious implications as the increased radiationdamage of the distant normal organs (due to tumor burden) is likely to adversely affect the therapeutic gain.  相似文献   
998.
Translation of thymidylate synthase (TS) mRNA is controlled by its own protein end-product TS in a negative autoregulatory manner. Disruption of this regulation results in increased synthesis of TS and may lead to the development of cellular drug resistance to TS-directed anticancer agents. As a strategy to inhibit TS expression, antisense 2′-O-methyl RNA oligoribonucleotides (ORNs) were designed to directly target the 5′ upstream cis-acting regulatory element (nucleotides 80–109) of TS mRNA. A 30 nt ORN, HYB0432, inhibited TS expression in human colon cancer RKO cells in a dose-dependent manner but had no effect on the expression of β-actin, α-tubulin or topoisomerase I. TS expression was unaffected by treatment with control sense or mismatched ORNs. HYB0504, an 18 nt ORN targeting the same core sequence, also repressed expression of TS protein. However, further reduction in oligo size resulted in loss of antisense activity. Following HYB0432 treatment, TS protein levels were reduced by 60% within 6 h and were maximally reduced by 24 h. Expression of p53 protein was inversely related to that of TS, suggesting that p53 expression may be directly linked to intracellular levels of TS. Northern blot analysis demonstrated that TS mRNA was unaffected by HYB0432 treatment. The half-life of TS protein was unchanged after antisense treatment suggesting that the mechanism of action of antisense ORNs is mediated through a process of translational arrest. These findings demonstrate that an antisense ORN targeted at a critical cis-acting element on TS mRNA can specifically inhibit expression of TS protein in RKO cells.  相似文献   
999.
Three-dimensional cryomaps have been reconstructed for tRNA-ribosome complexes in pre- and posttranslocational states at 17-A resolution. The positions of tRNAs in the A and P sites in the pretranslocational complexes and in the P and E sites in the posttranslocational complexes have been determined. Of these, the P-site tRNA position is the same as seen earlier in the initiation-like fMet-tRNA(f)(Met)-ribosome complex, where it was visualized with high accuracy. Now, the positions of the A- and E-site tRNAs are determined with similar accuracy. The positions of the CCA end of the tRNAs at the A site are different before and after peptide bond formation. The relative positions of anticodons of P- and E-site tRNAs in the posttranslocational state are such that a codon-anticodon interaction at the E site appears feasible.  相似文献   
1000.
Resting cells of a locally isolated strain of Aspergillus niger caused the bioconversion of alpha pinene to verbenone. The formation of verbenone was raised from trace amounts (under screening conditions) to 3.28 mg/100 ml (equivalent to a molar yield of 16.5% conversion of the substrate) by amending the cultivation medium for the fungus. The optimal conditions were: 6 g/100 ml for the glucose concentration, a pH of 7.0, an alpha pinene concentration of 20 mg/100 ml, and a 6-h incubation period for the reaction. Received: 9 August 1999 / Received revision: 24 September 1999 / Accepted: 24 September 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号