首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   19篇
  344篇
  2023年   1篇
  2022年   8篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   4篇
  2016年   8篇
  2015年   19篇
  2014年   13篇
  2013年   23篇
  2012年   22篇
  2011年   25篇
  2010年   15篇
  2009年   10篇
  2008年   17篇
  2007年   17篇
  2006年   16篇
  2005年   11篇
  2004年   18篇
  2003年   16篇
  2002年   12篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   9篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1975年   7篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
191.
192.
The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.  相似文献   
193.
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting bacteria (PGPB) can increase the growth and yield of major crops, and improve the quality of fruits and leaves. However, little is known about their impact on seed composition. Plants were inoculated with AM fungi and/or the bacterial strain Pseudomonas fluorescens Pf4 and harvested after 7 months of growth in open-field conditions. Plant growth parameters were measured (biomass, length and circumference of spikes, number of grains per cob, grain yield, and grain size) and protein, lipid, and starch content in grains were determined. Plant growth and yield were increased by inoculation with the microorganisms. Moreover, spikes and grains of inoculated plants were bigger than those produced by uninoculated plants. Regarding grain composition, the bacterial strain increased grain starch content, especially the digestible components, whereas AM fungi-enhanced protein, especially zein, content. Plant inoculation with the fluorescent pseudomonad and mycorrhizal fungi resulted in additive effects on grain composition. Overall, results showed that the bacterial strain and the AM fungi promoted maize growth cultivated in field conditions and differentially affected the grain nutritional content. Consequently, targeted plant inoculation with beneficial microorganisms can lead to commodities fulfilling consumer and industrial requirements.  相似文献   
194.
Circadian rhythms of physiology and behavior are generated by biological clocks that are synchronized to the cyclic environment by photic or nonphotic cues. The interactions and integration of various entrainment pathways to the clock are poorly understood. Here, we show that the Ras-like G protein Dexras1 is a critical modulator of the responsiveness of the master clock to photic and nonphotic inputs. Genetic deletion of Dexras1 reduces photic entrainment by eliminating a pertussis-sensitive circadian response to NMDA. Mechanistically, Dexras1 couples NMDA and light input to Gi/o and ERK activation. In addition, the mutation greatly potentiates nonphotic responses to neuropeptide Y and unmasks a nonphotic response to arousal. Thus, Dexras1 modulates the responses of the master clock to photic and nonphotic stimuli in opposite directions. These results identify a signaling molecule that serves as a differential modulator of the gated photic and nonphotic input pathways to the circadian timekeeping system.  相似文献   
195.
Spinal and bulbar muscular atrophy (SBMA) or Kennedy''s disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ) in the N-terminal androgen receptor (ARpolyQ) confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs) as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy''s patients, ADSCK) and three control volunteers (ADSCs). We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes), whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.  相似文献   
196.
The activities of several proteases in the hamster suprachiasmatic nuclei were measured at different time points throughout the daily or circadian cycle. No variation for metalloproteinase A (MMP-2) activity was found, while metalloproteinase B (MMP-9) was rhythmic and maximally active during the night. In addition, diurnal variations for two low molecular weight proteases were determined, with peaks during the light phase. This rhythmicity appears to be under exogenous control, since constant darkness abolished fluctuations throughout the circadian cycle. These results suggest that protein degradation in the hamster circadian clock is regulated in a diurnal fashion.  相似文献   
197.
IGF1R is emerging as an important gene in the pathogenesis of many solid and haematological cancers and its over-expression has been reported as frequently associated with aggressive disease and chemotherapy resistance. In this study we performed an investigation of the role of IGF1R expression in a large and representative prospective series of 217 chronic lymphocytic leukaemia (CLL) patients enrolled in the multicentre O-CLL1 protocol (clinicaltrial.gov #NCT00917540). High IGF1R gene expression was significantly associated with IGHV unmutated (IGHV-UM) status (p<0.0001), high CD38 expression (p<0.0001), trisomy 12 (p<0.0001), and del(11)(q23) (p=0.014). Interestingly, higher IGF1R expression (p=0.002) characterized patients with NOTCH1 mutation (c.7541_7542delCT), identified in 15.5% of cases of our series by next generation sequencing and ARMS-PCR. Furthermore, IGF1R expression has been proven as an independent prognostic factor associated with time to first treatment in our CLL prospective cohort. These data suggest that IGF1R may play an important role in CLL biology, in particular in aggressive CLL clones characterized by IGHV-UM, trisomy 12 and NOTCH1 mutation.  相似文献   
198.
Functional brain activation studies described the presence of separate cortical areas responsible for central processing of peripheral vestibular information and reported their activation and interactions with other sensory modalities and the changes of this network associated to strategic peripheral or central vestibular lesions. It is already known that cortical changes induced by acute unilateral vestibular failure (UVF) are various and undergo variations over time, revealing different cortical involved areas at the onset and recovery from symptoms. The present study aimed at reporting the earliest change in cortical metabolic activity during a paradigmatic form of UVF such as vestibular neuritis (VN), that is, a purely peripheral lesion of the vestibular system, that offers the opportunity to study the cortical response to altered vestibular processing. This research reports [18F]fluorodeoxyglucose positron emission tomography brain scan data concerning the early cortical metabolic activity associated to symptoms onset in a group of eight patients suffering from VN. VN patients’ cortical metabolic activity during the first two days from symptoms onset was compared to that recorded one month later and to a control healthy group. Beside the known cortical response in the sensorimotor network associated to vestibular deafferentation, we show for the first time the involvement of Entorhinal (BAs 28, 34) and Temporal (BA 38) cortices in early phases of symptomatology onset. We interpret these findings as the cortical counterparts of the attempt to reorient oneself in space counteracting the vertigo symptom (Bas 28, 34) and of the emotional response to the new pathologic condition (BA 38) respectively. These interpretations were further supported by changes in patients’ subjective ratings in balance, anxiety, and depersonalization/derealization scores when tested at illness onset and one month later. The present findings contribute in expanding knowledge about early, fast-changing, and complex cortical responses to pathological vestibular unbalanced processing.  相似文献   
199.
Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ2H and δ18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water.  相似文献   
200.
Coral reefs are threatened by global and local stressors. Yet, reefs appear to respond differently to different environmental stressors. Using a global dataset of coral reef occurrence as a proxy for the long‐term adaptation of corals to environmental conditions in combination with global environmental data, we show here how global (warming: sea surface temperature; acidification: aragonite saturation state, Ωarag) and local (eutrophication: nitrate concentration, and phosphate concentration) stressors influence coral reef habitat suitability. We analyse the relative distance of coral communities to their regional environmental optima. In addition, we calculate the expected change of coral reef habitat suitability across the tropics in relation to an increase of 0.1°C in temperature, an increase of 0.02 μmol/L in nitrate, an increase of 0.01 μmol/L in phosphate and a decrease of 0.04 in Ωarag. Our findings reveal that only 6% of the reefs worldwide will be unaffected by local and global stressors and can thus act as temporary refugia. Local stressors, driven by nutrient increase, will affect 22% of the reefs worldwide, whereas global stressors will affect 11% of these reefs. The remaining 61% of the reefs will be simultaneously affected by local and global stressors. Appropriate wastewater treatments can mitigate local eutrophication and could increase areas of temporary refugia to 28%, allowing us to ‘buy time’, while international agreements are found to abate global stressors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号