首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   17篇
  2022年   4篇
  2021年   8篇
  2020年   1篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   12篇
  2015年   19篇
  2014年   15篇
  2013年   25篇
  2012年   24篇
  2011年   23篇
  2010年   18篇
  2009年   8篇
  2008年   11篇
  2007年   19篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有275条查询结果,搜索用时 140 毫秒
41.
Macrophytes have a fundamental structuring role in aquatic environments. Several authors have suggested that trophic interactions are particularly mediated by aquatic plants. In the current article, we evaluated the effects of the structural heterogeneity provided by Eichhornia azurea (Kunth) roots on predation and habitat use by the small fish Moenkhausia sanctaefilomenae (Steindachner). We tested the hypotheses that (i) high structural heterogeneity protects macroinvertebrates against predation by M. sanctaefilomenae; (ii) distinct prey types are differently protected by the refuge provided by roots; and (iii) the behavior of M. sanctaefilomenae is affected by the structural heterogeneity provided by macrophyte roots. To test these hypotheses, we performed an experiment in 20 l aquaria in which macroinvertebrates (Cypricercus sp. and Chironomus sp.) were exposed to M. sanctaefilomenae predation for 4 h under three structural heterogeneities, represented by different root densities. High structural heterogeneity protected macroinvertebrates against predation. Additionally, E. azurea roots similarly protected different prey species. The macrophyte spatial structure substantially changed the habitat use of M. sanctaefilomenae. In general, our results corroborated the hypothesis that the structural heterogeneity provided by E. azurea roots significantly affects predation and habitat use by M. sanctaefilomenae. Handling editor: S. Declerck  相似文献   
42.

Background  

Cytosolic glutathione transferases (cGST) are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates.  相似文献   
43.
Alignment-free classifiers are especially useful in the functional classification of protein classes with variable homology and different domain structures. Thus, the Topological Indices to BioPolymers (TI2BioP) methodology (Agüero-Chapin et al., 2010) inspired in both the TOPS-MODE and the MARCH-INSIDE methodologies allows the calculation of simple topological indices (TIs) as alignment-free classifiers. These indices were derived from the clustering of the amino acids into four classes of hydrophobicity and polarity revealing higher sequence-order information beyond the amino acid composition level. The predictability power of such TIs was evaluated for the first time on the RNase III family, due to the high diversity of its members (primary sequence and domain organization). Three non-linear models were developed for RNase III class prediction: Decision Tree Model (DTM), Artificial Neural Networks (ANN)-model and Hidden Markov Model (HMM). The first two are alignment-free approaches, using TIs as input predictors. Their performances were compared with a non-classical HMM, modified according to our amino acid clustering strategy. The alignment-free models showed similar performances on the training and the test sets reaching values above 90% in the overall classification. The non-classical HMM showed the highest rate in the classification with values above 95% in training and 100% in test. Although the higher accuracy of the HMM, the DTM showed simplicity for the RNase III classification with low computational cost. Such simplicity was evaluated in respect to HMM and ANN models for the functional annotation of a new bacterial RNase III class member, isolated and annotated by our group.  相似文献   
44.
This study presents a genetic characterization of 27 potentially toxic cyanobacterial strains isolated from seven reservoirs located in the north and centre of Tunisia. These strains belonged mainly to Microcystis aeruginosa, Cylindrospermopsis raciborskii and Planktothrix agardhii species. Their toxicological potential was evaluated by molecular biology tools, which showed that none of the isolated strains carried segments of the gene cluster responsible for the production of cylindrospermopsin and saxitoxin. The majority of Microcystis isolates were able to synthesize microcystin, since they presented the six characteristic segments of the microcystin synthetase mcy cluster (mcyA, -B, -C, -D, -E and -G). This was further confirmed by MALDI-TOF analysis that showed the presence of eight microcystin variants, including microcystin-LR. The taxonomic identification of the strains was assessed based on the variability of the 16S rRNA gene sequences. Furthermore, the 16S-23S rRNA ITS sequences of Microcystis isolates and rpoC1 sequences of Cylindrospermopsis strains were also used in the phylogenetic analysis.  相似文献   
45.
Microcystis aeruginosa is a bloom-forming cyanobacteria, which currently has a cosmopolitan distribution. Since M. aeruginosa can produce toxic compounds across all continents that it inhabits, it is of major public health relevance to assess its origin and dispersal. Thus, we conducted a worldwide study using 29 isolates representative of all the main continents, and used a concatenated genetic system for phylogenetic analyses consisting of four genetic markers (spanning ca. 3,485 bp). Our results support an early origin of M. aeruginosa in the African continent, with a subsequent dispersal to establish a second genetic pool in the European continent, from where M. aeruginosa then colonized the remaining continental regions. Our findings indicate that the European population has a cosmopolitan distribution, and is genetically closer to populations from Africa and North America. Our study also highlights the utility of using a concatenated dataset for phylogenetic inferences in cyanobacteria.  相似文献   
46.

Background

Adaptation of mammals to terrestrial life was facilitated by the unique vertebrate trait of body hair, which occurs in a range of morphological patterns. Keratin associated proteins (KRTAPs), the major structural hair shaft proteins, are largely responsible for hair variation.

Results

We exhaustively characterized the KRTAP gene family in 22 mammalian genomes, confirming the existence of 30 KRTAP subfamilies evolving at different rates with varying degrees of diversification and homogenization. Within the two major classes of KRTAPs, the high cysteine (HS) subfamily experienced strong concerted evolution, high rates of gene conversion/recombination and high GC content. In contrast, high glycine-tyrosine (HGT) KRTAPs showed evidence of positive selection and low rates of gene conversion/recombination. Species with more hair and of higher complexity tended to have more KRATP genes (gene expansion). The sloth, with long and coarse hair, had the most KRTAP genes (175 with 141 being intact). By contrast, the “hairless” dolphin had 35 KRTAPs and the highest pseudogenization rate (74% relative to the 19% mammalian average). Unique hair-related phenotypes, such as scales (armadillo) and spines (hedgehog), were correlated with changes in KRTAPs. Gene expression variation probably also influences hair diversification patterns, for example human have an identical KRTAP repertoire as apes, but much less hair.

Conclusions

We hypothesize that differences in KRTAP gene repertoire and gene expression, together with distinct rates of gene conversion/recombination, pseudogenization and positive selection, are likely responsible for micro and macro-phenotypic hair diversification among mammals in response to adaptations to ecological pressures.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-779) contains supplementary material, which is available to authorized users.  相似文献   
47.
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.  相似文献   
48.
Visceral leishmaniasis (VL) is caused by protozoa belonging to the Leishmania donovani complex and is considered the most serious and fatal form among the different types of leishmaniasis, if not early diagnosed and treated. Among the measures of disease control stand out the management of infected dogs and the early diagnosis and appropriate treatment of human cases. Several antigens have been characterized for use in the VL diagnosis, among them are the recombinant kinesin-derived antigens from L. infantum, as rK39 and rKDDR. The main difference between these antigens is the size of the non-repetitive kinesin region and the number of repetitions of the 39 amino acid degenerate motif (6.5 and 8.5 repeats in rK39 and rKDDR, respectively). This repetitive region has a high antigenicity score. To evaluate the effect of increasing the number of repeats on diagnostic performance, we designed the rKDDR-plus antigen, containing 15.3 repeats of the 39 amino acid degenerate motif, besides the absence of the non-repetitive portion from L. infantum kinesin. Its performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and rapid immunochromatographic test (ICT), and compared with the kinesin-derived antigens (rKDDR and rK39). In ELISA with human sera, all recombinant antigens had a sensitivity of 98%, whereas the specificity for rKDDR-plus, rKDDR and rK39 was 100%, 96% and 71%, respectively. When evaluated canine sera, the ELISA sensitivity was 97% for all antigens, and the specificity for rKDDR-plus, rKDDR and rK39 was 98%, 91% and 83%, respectively. Evaluation of the ICT/rKDDR-plus, using human sera, showed greater diagnostic sensitivity (90%) and specificity (100%), when compared to the IT LEISH (79% and 98%, respectively), which is based on the rK39 antigen. These results suggest that the increased presence of repetitive motifs in the rKDDR-plus protein improves the diagnostic performance of serological tests by increasing the specificity and accuracy of the diagnosis.  相似文献   
49.
This work reports the substrate temperature-influenced change in the structural, morphological, optical, and glucose sensing properties of silver (Ag) nanoparticles (NPs) deposited on p-type Si (100) wafers. AgNP films grown at temperatures ranging from RT to 600 °C clearly show a dependence of orientation texture and surface morphology on substrate temperature (T s). As T s increases from RT towards 600 °C, the preferred orientation of AgNP film changes from (111) to (200). The AgNPs size, that is T s-dependent, reaches the maximum value at T s = 300 °C. This result is attributed to restructuring of AgNPs texture. Moreover, the AgNP shape also changes from ellipsoid to sphere as T s increases from RT to 600 °C. Surface plasmon enhancement in photoluminescence intensity is observed with increase in T s. It is found also that the AgNP film deposited at 300 °C has considerable reflectance reduction relative to the silicon substrate, in wavelength range of 300–800 nm and a progressive red shift of localized surface plasmon resonances caused by the adding of increasing quantities of glucose has been observed. As a proof of concept, we also demonstrate the capability of grown AgNP substrates for glucose detection based on surface enhanced Raman spectroscopy in physiological concentration range with short integration time 10 s, varying with T s.  相似文献   
50.
Kettle holes are often abundant within agriculturally used moraine landscapes. They are highly enriched with nutrients and considered hotspots of carbon turnover. However, data on their primary productivity remain rare. We analysed two kettle holes typical to Germany with common aquatic plant communities during one year. We hypothesised that gross primary production (GPP) rates would be high compared to other temperate freshwater ecosystems, leading to high sediment deposition. Summer GPP rates (4.5–5.1 g C m?2 day?1) were higher than those of most temperate freshwater systems, but GPP rates were reduced by 90% in winter. Macrophytes dominated GPP from May to September with emergent macrophytes accounting for half of the GPP. Periphyton contributed to most of the system GPP throughout the rest of the year. Sediment deposition rates were high and correlated with GPP in one kettle hole. In contrast, due to prolonged periods of anoxia, aerobic sediment mineralisation was low while sediment phosphorus release was significant. Our results suggest that kettle holes have a high potential for carbon burial, provided they do not fully dry up during warm years. Due to their unique features, they should not be automatically grouped with ponds and shallow lakes in global carbon budget estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号