首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   18篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   15篇
  2015年   12篇
  2014年   12篇
  2013年   22篇
  2012年   22篇
  2011年   16篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   10篇
  2006年   17篇
  2005年   10篇
  2004年   10篇
  2003年   8篇
  2002年   9篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有249条查询结果,搜索用时 328 毫秒
161.
162.
Application of regurgitant from Leptinotarsa decemlineata Say on wound surfaces of one wounded leaf of intact bean (Phaseolus vulgaris L.) plants resulted in activation of ethylene biosynthesis followed by an increase of both peroxidase and polyphenol oxidase activity. The aim of the present investigation was to study the source of increased oxidative enzyme activities in regurgitant-treated bean leaves and to determine if hydrogen peroxide and ethylene biosynthesis is responsible for regurgitant-induced amplification of wound responses in bean plants. As the regurgitant contained relative high activities of both peroxidase and polyphenol oxidase, there is a possibility that increased enzyme activities in bean leaves following regurgitant treatment is an artifact of insect-derived enzymes. Localisation experiments and electrophoretic analysis revealed that only part of the increased enzyme activities could be attributed to regurgitant-derived enzymes. Both increase of ethylene production and oxidative enzyme activities depended on protein synthesis. To demonstrate if the increase of oxidative metabolism was ethylene-dependent, seedlings were pretreated with aminooxyacetic acid, an inhibitor of ethylene biosynthesis, and 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. Increase of both peroxidase and polyphenol oxidase activity in wounded and subsequently regurgitant-treated leaf was abolished by both aminooxyacetic acid and 1-MCP. Inhibitor studies indicated that H2O2 generated through NADPH oxidase and superoxide dismutase is necessary for regurgitant-induced increase of ethylene production and oxidative enzyme activities.  相似文献   
163.
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.  相似文献   
164.
Integrin alpha6beta4 signaling proceeds through Src family kinase (SFK)-mediated phosphorylation of the cytoplasmic tail of beta4, recruitment of Shc, and activation of Ras and phosphoinositide-3 kinase. Upon cessation of signaling, alpha6beta4 mediates assembly of hemidesmosomes. Here, we report that part of alpha6beta4 is incorporated in lipid rafts. Metabolic labeling in combination with mutagenesis indicates that one or more cysteine in the membrane-proximal segment of beta4 tail is palmitoylated. Mutation of these cysteines suppresses incorporation of alpha6beta4 in lipid rafts, but does not affect alpha6beta4-mediated adhesion or assembly of hemidesmosomes. The fraction of alpha6beta4 localized to rafts associates with a palmitoylated SFK, whereas the remainder does not. Ligation of palmitoylation-defective alpha6beta4 does not activate SFK signaling to extracellular signal-regulated kinase and fails to promote keratinocyte proliferation in response to EGF. Thus, compartmentalization in lipid rafts is necessary to couple the alpha6beta4 integrin to a palmitoylated SFK and promote EGF-dependent mitogenesis.  相似文献   
165.
The G-->A mutation at position 20210 of the prothrombin gene, localized in the 3'-polyadenylation untranslated region of the mRNA, is a recognized genetic risk factor for venous thromboembolism. The mechanism by which this base change confers an increased risk of thrombosis compared to noncarriers is undefined. Studies on the mRNA suggest enhanced cleavage site recognition and a change in the location of the 3'-cleavage/polyadenylation reaction, but no defined model has been proposed. The present study, based on proteomic investigation by two-dimensional gel electrophoresis and electrospray ionization (ESI) tandem mass spectrometry (MS/MS) protein identification, suggests that the G20210A mutation is associated with increased glycosylation of prothrombin, which confers greater stability to the protein. Additionally, proteomic investigation of pooled plasma showed that expression levels of six spots, three of them identified by ESI MS/MS, were altered in subjects carrying the mutation, suggesting a possible cooperative effect in the thrombotic risk increment induced by the mutation.  相似文献   
166.
Phagosomal biogenesis is central for microbial killing and antigen presentation by leukocytes. However, the molecular mechanisms governing phagosome maturation are poorly understood. We analyzed the role and site of action of phosphatidylinositol 3-kinases (PI3K) and of Rab GTPases in maturation using both professional and engineered phagocytes. Rab5, which is recruited rapidly and transiently to the phagosome, was found to be essential for the recruitment of Rab7 and for progression to phagolysosomes. Similarly, functional PI3K is required for successful maturation. Remarkably, inhibition of PI3K did not preclude Rab5 recruitment to phagosomes but instead enhanced and prolonged it. Moreover, in the presence of PI3K inhibitors Rab5 was found to be active, as deduced from measurements of early endosome antigen 1 binding and by photobleaching recovery determinations. Though their ability to fuse with late endosomes and lysosomes was virtually eliminated by wortmannin, phagosomes nevertheless recruited a sizable amount of Rab7. Moreover, Rab7 recruited to phagosomes in the presence of PI3K antagonists retained the ability to bind its effector, Rab7-interacting lysosomal protein, suggesting that it is functionally active. These findings imply that (i) dissociation of Rab5 from phagosomes requires products of PI3K, (ii) PI3K-dependent effectors of Rab5 are not essential for the recruitment of Rab7 by phagosomes, and (iii) recruitment and activation of Rab7 are insufficient to induce fusion of phagosomes with late endosomes and lysosomes. Accordingly, transfection of constitutively active Rab7 did not bypass the block of phagolysosome formation exerted by wortmannin. We propose that Rab5 activates both PI3K-dependent and PI3K-independent effectors that act in parallel to promote phagosome maturation.  相似文献   
167.
Kiwellin is a novel protein of 28 kDa isolated from kiwi (Actinidia chinensis) fruit. It is one of the three most abundant proteins present in the edible part of this fruit. Kiwellin has been purified by ion exchange chromatography. Its N-terminal amino acid sequence revealed high identity with that previously reported for a 28 kDa protein described as one of the most important kiwi allergens. This observation prompted us to fully characterize this protein. The complete primary structure, elucidated by direct sequencing, indicated that kiwellin is a cysteine-rich protein. Serological tests and Western Blotting analysis showed that kiwellin is specifically recognized by IgE of patients allergic to kiwi fruit. *The protein sequence data reported in this paper will appear in the Swiss-Prot and TrEMBL knowledgebase under the accessionnumber P84527.  相似文献   
168.
The aggregation of Gramicidin A (gA) in dipalmitoylphosphatidylcoline (DPPC) monolayers is investigated by both thermodynamic and structural methods. Compression isotherm analysis and atomic force microscopy (AFM) observations are performed. Our experimental results indicate that gA aggregation does occur in DPPC monolayers even at very low gA concentration (about 8 x 10(-4) mol%). At the low gA concentration limit, the aggregation process seems to be mainly horizontal (i.e., side-by-side, into the monolayer plane), following a fractal pattern growth producing the formation of typical, flat (0.5 nm height) "doughnut" structures, with a diameter of approximately 150 nm. These structures appear to be composed of smaller subunits (about 70 nm diameter) showing the same doughnut structure. At a molar fraction of approximately 3.8 mol%, the big doughnuts start to disaggregate and only small doughnuts appear. Above a gA concentration of approximately 4.4 mol%, all doughnuts (large and small) disappear, and the morphology assumes the appearance of a patchwork of two distinct phases: one that, being very flat, can be associated with a gA-free or gA-poor DPPC phase, and a second one, characterized by a more corrugated surface, associated with a gA-rich DPPC phase. At gA concentration of approximately 5 mol%, a percolation transition in the gA-rich DPPC phase occurs. Thermodynamic data indicate that the maximum of miscibility between gA and DPPC molecules occurs at approximately 28 mol%, suggesting that gA could aggregate in hexamers that are, on average, bound to 16 DPPC molecules. At the same concentration, AFM images show a network of small gA aggregation units of a size compatible with gA hexamers.  相似文献   
169.
We have recently reported that the inhibition of endothelial cell COX-2 by non-steroidal anti-inflammatory drugs suppresses alpha(V)beta(3)- (but not alpha(5)beta(1)-) dependent Rac activation, endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047). Here we investigated the role of the COX-2 metabolites PGE(2) and TXA2 in regulating human umbilical vein endothelial cell (HUVEC) adhesion and spreading. We report that PGE(2) accelerated alpha(V)beta(3)-mediated HUVEC adhesion and promoted Rac activation and cell spreading, whereas the TXA2 agonist retarded adhesion and inhibited spreading. We show that the cAMP level and the cAMP-regulated protein kinase A (PKA) activity are critical mediators of these PGE(2) effects. alpha(V)beta(3)-mediated adhesion induced a transient COX-2-dependent rise in cAMP levels, whereas the cell-permeable cAMP analogue 8-brcAMP accelerated adhesion, promoted Rac activation, and cell spreading in the presence of the COX-2 inhibitor NS-398. Pharmacological inhibition of PKA completely blocked alpha(V)beta(3)-mediated adhesion. A constitutively active Rac mutant (L61Rac) rescued alpha(V)beta(3)-dependent spreading in the presence of NS398 or, but did not accelerate adhesion, whereas a dominant negative Rac mutant (N17Rac) suppressed spreading without affecting adhesion. alpha(5)beta(1)-mediated HUVEC adhesion, Rac activation, and spreading were not affected by PGE(2), 8-brcAMP, or the inhibition of PKA. In conclusion, these results demonstrate that PGE(2) accelerates alpha(V)beta(3)-mediated endothelial cell adhesion through cAMP-dependent PKA activation and induces alpha(V)beta(3)-dependent spreading via cAMP- and PKA-dependent Rac activation and may contribute to the further understanding of the regulation of vascular integrins alpha(V)beta(3) by COX-2/PGE(2) during tumor angiogenesis and inflammation.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号