首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42064篇
  免费   3146篇
  国内免费   6篇
  2023年   198篇
  2022年   235篇
  2021年   646篇
  2020年   484篇
  2019年   537篇
  2018年   1283篇
  2017年   1080篇
  2016年   1299篇
  2015年   1885篇
  2014年   1861篇
  2013年   2558篇
  2012年   3009篇
  2011年   2872篇
  2010年   1797篇
  2009年   1563篇
  2008年   2327篇
  2007年   2274篇
  2006年   2223篇
  2005年   1964篇
  2004年   1907篇
  2003年   1739篇
  2002年   1626篇
  2001年   875篇
  2000年   839篇
  1999年   752篇
  1998年   424篇
  1997年   334篇
  1996年   317篇
  1995年   308篇
  1994年   245篇
  1993年   239篇
  1992年   431篇
  1991年   426篇
  1990年   362篇
  1989年   324篇
  1988年   315篇
  1987年   271篇
  1986年   264篇
  1985年   256篇
  1984年   203篇
  1983年   165篇
  1982年   143篇
  1981年   173篇
  1980年   144篇
  1979年   196篇
  1978年   166篇
  1977年   135篇
  1976年   145篇
  1974年   140篇
  1971年   133篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Microbial communities in natural ecosystems are subject to strong ecological rules. The study of local communities along a regional metacommunity can reveal patterns of community assembly, and disentangle the underlying ecological processes. In particular, we seek drivers of community assembly at the regional scale using a large lacustrine dataset (>300 lakes) along the geographical, limnological and physico-chemical gradients in the Pyrenees. By using high throughput amplicon sequencing of the 16S rRNA gene, and inferring environmental sources of bacterial immigrants, we showed that surface aquatic bacterial assemblages were strongly influenced by terrestrial populations from soil, biofilms or sediments, and primarily selected by a pH-alkalinity gradient. Indeed, source proportions explained 27% of the community variation, and chemistry 15% of the total variation, half of it shared with the sources. Major taxonomic groups such as Verrucomicrobia, Actinobacteria and Bacteroidetes showed higher aquatic affinities than Parcubacteria, Gammaproteobacteria, Alphaproteobacteria or Betaproteobacteria, which may be recruited and selected through different hydrographic habitats. A regional fingerprint was observed with lower alpha diversity and higher beta diversity in the central Pyrenees than in both ends. We suggest an ecological succession process, likely influenced by complex interactions of environmental source dispersal and environmental filtering along the mountain range geography.  相似文献   
992.
The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.  相似文献   
993.
Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.  相似文献   
994.
Apoptosis‐inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram‐negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single‐chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc‐metalloprotease moiety that cleaves the NF‐kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase‐thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.  相似文献   
995.
The soybean–Phytophthora sojae interaction operates on a gene-for-gene relationship, where the product of a resistance gene (Rps) in the host recognizes that of an avirulence gene (Avr) in the pathogen to generate an incompatible reaction. To exploit this form of resistance, one must match with precision the appropriate Rps gene with the corresponding Avr gene. Currently, this association is evaluated by phenotyping assays that are labour-intensive and often imprecise. To circumvent this limitation, we sought to develop a molecular assay that would reveal the avirulence allele of the seven main Avr genes (Avr1a, Avr1b, Avr1c, Avr1d, Avr1k, Avr3a, and Avr6) in order to diagnose with precision the pathotypes of P. sojae isolates. For this purpose, we analysed the genomic regions of these Avr genes in 31 recently sequenced isolates with different virulence profiles and identified discriminant mutations between avirulence and virulence alleles. Specific primers were designed to generate amplicons of a distinct size, and polymerase chain reaction conditions were optimized in a final assay of two parallel runs. When tested on the 31 isolates of known virulence, the assay accurately revealed all avirulence alleles. The test was further assessed and compared to a phenotyping assay on 25 isolates of unknown virulence. The two assays matched in 97% (170/175) of the interactions studied. Interestingly, the sole cases of discrepancy were obtained with Avr3a, which suggests a possible imperfect interaction with Rps3a. This molecular assay offers a powerful and reliable tool to exploit and study with greater precision soybean resistance against P. sojae.  相似文献   
996.
997.
Biological pathways play an important role in the occurrence, development and recovery of complex diseases, such as cancers, which are multifactorial complex diseases that are generally caused by mutation of multiple genes or dysregulation of pathways. We propose a path-specific effect statistic (PSE) to detect the differential specific paths under two conditions (e.g. case VS. control groups, exposure Vs. nonexposure groups). In observational studies, the path-specific effect can be obtained by separately calculating the average causal effect of each directed edge through adjusting for the parent nodes of nodes in the specific path and multiplying them under each condition. Theoretical proofs and a series of simulations are conducted to validate the path-specific effect statistic. Applications are also performed to evaluate its practical performances. A series of simulation studies show that the Type I error rates of PSE with Permutation tests are more stable at the nominal level 0.05 and can accurately detect the differential specific paths when comparing with other methods. Specifically, the power reveals an increasing trends with the enlargement of path-specific effects and its effect differences under two conditions. Besides, the power of PSE is robust to the variation of parent or child node of the nodes on specific paths. Application to real data of Glioblastoma Multiforme (GBM), we successfully identified 14 positive specific pathways in mTOR pathway contributing to survival time of patients with GBM. All codes for automatic searching specific paths linking two continuous variables and adjusting set as well as PSE statistic can be found in supplementary materials.  The proposed PSE statistic can accurately detect the differential specific pathways contributing to complex disease and thus potentially provides new insights and ways to unlock the black box of disease mechanisms.  相似文献   
998.
The shallow marine and subaerial sedimentary and hydrothermal rocks of the ~3.48 billion‐year‐old Dresser Formation are host to some of Earth's oldest stromatolites and microbial remains. This study reports on texturally distinctive, spherulitic barite micro‐mineralization that occur in association with primary, autochthonous organic matter within exceptionally preserved, strongly sulfidized stromatolite samples obtained from drill cores. Spherulitic barite micro‐mineralization within the sulfidized stromatolites generally forms submicron‐scale aggregates that show gradations from hollow to densely crystallized, irregular to partially radiating crystalline interiors. Several barite micro‐spherulites show thin outer shells. Within stromatolites, barite micro‐spherulites are intimately associated with petrographically earliest dolomite and nano‐porous pyrite enriched in organic matter, the latter of which is a possible biosignature assemblage that hosts microbial remains. Barite spherulites are also observed within layered barite in proximity to stromatolite layers, where they are overgrown by compositionally distinct (Sr‐rich), coarsely crystalline barite that may have been sourced from hydrothermal veins at depth. Micro‐spherulitic barite, such as reported here, is not known from hydrothermal systems that exceed the upper temperature limit for life. Rather, barite with near‐identical morphology and micro‐texture is known from zones of high bio‐productivity under low‐temperature conditions in the modern oceans, where microbial activity and/or organic matter of degrading biomass controls the formation of spherulitic aggregates. Hence, the presence of micro‐spherulitic barite in the organic matter‐bearing Dresser Formation sulfidized stromatolites lend further support for a biogenic origin of these unusual, exceptionally well‐preserved, and very ancient microbialites.  相似文献   
999.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   
1000.
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e?8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号