首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   61篇
  国内免费   1篇
  2023年   10篇
  2022年   9篇
  2021年   15篇
  2020年   17篇
  2019年   27篇
  2018年   47篇
  2017年   31篇
  2016年   35篇
  2015年   74篇
  2014年   60篇
  2013年   88篇
  2012年   96篇
  2011年   92篇
  2010年   54篇
  2009年   38篇
  2008年   52篇
  2007年   78篇
  2006年   60篇
  2005年   48篇
  2004年   36篇
  2003年   42篇
  2002年   41篇
  2001年   9篇
  2000年   10篇
  1999年   19篇
  1998年   3篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   9篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1169条查询结果,搜索用时 765 毫秒
141.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   
142.
143.
Cephalopod head parts are among the most complex occurring in all invertebrates. Hypotheses for the evolutionary process require a drastic body-plan transition in relation to the life-style changes from benthos to active nekton. Determining these transitions, however, has been elusive because of scarcity of fossil records of soft tissues and lack of some of the early developmental stages of the basal species. Here we report the first embryological evidence in the nautiloid cephalopod Nautilus pompilius for the morphological development of the head complex by a unique assembly of multiple archetypical molluscan body parts. Using a specialized aquarium system, we successfully obtained a series of developmental stages that enabled us to test previous controversial scenarios. Our results demonstrate that the embryonic organs exhibit body plans that are primarily bilateral and antero-posteriorly elongated at stereotyped positions. The distinct cephalic compartment, foot, brain cords, mantle, and shell resemble the body plans of monoplacophorans and basal gastropods. The numerous digital tentacles of Nautilus develop from simple serial and spatially-patterned bud-like anlagen along the anterior-posterior axis, indicating that origins of digital tentacles or arms of all other cephalopods develop not from the head but from the foot. In middle and late embryos, the primary body plans largely change to those of juveniles or adults, and finally form a "head" complex assembled by anlagen of the foot, cephalic hood, collar, hyponome (funnel), and the foot-derived epidermal covers. We suggest that extensions of the collar-funnel compartment and free epidermal folds derived from multiple topological foot regions may play an important role in forming the head complex, which is thought to be an important feature during the body plan transition.  相似文献   
144.
The bioconversion of propionitrile to propionamide was catalysed by nitrile hydratase (NHase) using resting cells of Microbacterium imperiale CBS 498-74 (formerly, Brevibacterium imperiale). This microorganism, cultivated in a shake flask, at 28 °C, presented a specific NHase activity of 34.4 U mgDCW−1 (dry cell weight). The kinetic parameters, Km and Vmax, tested in 50 mM sodium phosphate buffer, pH 7.0, in the propionitrile bioconversion was evaluated in batch reactor at 10 °C and resulted 21.6 mM and 11.04 μmol min−1 mgDCW−1, respectively. The measured apparent activation energy, 25.54 kJ mol−1, indicated a partial control by mass transport, more likely through the cell wall.

UF-membrane reactors were used for kinetic characterisation of the NHase catalysed reaction. The time dependence of enzyme deactivation on reaction temperature (from 5 to 25 °C), on substrate concentrations (from 100 to 800 mM), and on resting cell loading (from 1.5 to 200 μg  ml−1) indicated: lower diffusional control (Ea=37.73 kJ mol−1); and NHase irreversible damage caused by high substrate concentration. Finally, it is noteworthy that in an integral reactor continuously operating for 30 h, at 10 °C, 100% conversion of propionitrile (200 mM) was attained using 200 μg  ml−1 of resting cells, with a maximum volumetric productivity of 0.5 g l−1 h−1.  相似文献   

145.
Thermoacidophilic and halotolerant microorganisms from the Antarctic continent were studied for their lipid modulation under stress growth conditions. Temperature-induced changes in complex lipids and fatty acids of four strains belonging to the genus Alicyclobacillus involved the relative proportions of different polar lipids and the synthesis of ω-cyclohexyl-acyl chains, which were favoured by high temperatures. Studies were carried out on the lipid composition of four strains of extremely halotolerant bacteria belonging to the genus Micrococcus grown at different salt concentrations from 0 up to 4.5 M NaCl. The main lipids found were two unidentified glycolipids and two phospholipids: 1,2 diacylglycero-3-phosphoryl-glycerol (PG) and cardiolipin (DPG). Among the strains analysed, the lipids of the Micrococcus strain Erebus were shown to be strongly influenced by salt concentrations, in that DPG and one glycolipid were absent at a low salt molarity while, under these conditions, PG was the main lipid found. The predominant fatty acids in all halotolerant strains were of the anteiso type; growth under increasing salinity gave rise to an increase in long chain fatty acids and of straight chain fatty acids, while a decrease in iso fatty acids occurred. Accepted: 20 May 2000  相似文献   
146.
147.
148.
PACAP and its cognate peptide VIP participate in various biological functions, including myelin maturation and synthesis. However, defining whether these peptides affect peripheral expression of myelin proteins still remains unanswered. To address this issue, we assessed whether PACAP or VIP contribute to regulate the expression of three myelin proteins (MAG, MBP and MPZ, respectively) using the rat schwannoma cell line (RT4-P6D2T), a well-established model to study myelin gene expression. In addition, we endeavored to partly unravel the underlying molecular mechanisms involved. Expression of myelin-specific proteins was assessed in cells grown either in normal serum (10% FBS) or serum starved and treated with or without 100 nM PACAP or VIP. Furthermore, through pharmacological approach using the PACAP/VIP receptor antagonist (PACAP6-38) or specific pathway (MAPK or PI3K) inhibitors we defined the relative contribution of receptors and/or signaling pathways on the expression of myelin proteins. Our data show that serum starvation (24 h) significantly increased both MAG, MBP and MPZ expression. Concurrently, we observed increased expression of endogenous PACAP and related receptors. Treatment with PACAP or VIP further exacerbated starvation-induced expression of myelin markers, suggesting that serum withdrawal might sensitize cells to peptide activity. Stimulation with either peptides increased phosphorylation of Akt at Ser473 residue but had no effect on phosphorylated Erk-1/2. PACAP6-38 (10 μM) impeded starvation- or peptide-induced expression of myelin markers. Similar effects were obtained after pretreatment with the PI3K inhibitor (wortmannin, 10 μM) but not the MAPKK inhibitor (PD98059, 50 μM). Together, the present finding corroborate the hypothesis that PACAP and VIP might contribute to the myelinating process preferentially via the canonical PI3K/Akt signaling pathway, providing the basis for future studies on the role of these peptides in demyelinating diseases.  相似文献   
149.
150.
The neuroendocrine system of insects, including the presence of the main neuroactive compounds, and their role in ontogenesis are probably best understood of all the arthropods. Development, metamorphosis, the maturation of the gonads, vitellogenesis and egg production are regulated by hormones (juvenile hormones, ecdysteroids) and neuropeptides. However, knowledge about their presence and functions in spiders is fragmentary. In this paper, we present a summary of the current data about the juvenile hormones, ecdysteroids and neuropeptides in selected groups of arthropods, with particular emphasis on spiders. This is the first article that takes into account the occurrence, action and role of hormones and neuropeptides in spiders. In addition, the suggestions for possible ways to study these compounds in Araneomorphae spiders are unique and cannot be found in the arachnological literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号