首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   24篇
  国内免费   5篇
  634篇
  2023年   8篇
  2022年   14篇
  2021年   56篇
  2020年   19篇
  2019年   23篇
  2018年   17篇
  2017年   13篇
  2016年   24篇
  2015年   30篇
  2014年   36篇
  2013年   55篇
  2012年   42篇
  2011年   36篇
  2010年   14篇
  2009年   16篇
  2008年   24篇
  2007年   32篇
  2006年   21篇
  2005年   18篇
  2004年   19篇
  2003年   20篇
  2002年   10篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   8篇
  1991年   11篇
  1990年   8篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有634条查询结果,搜索用时 15 毫秒
1.
Perspective texture synthesis has great significance in many fields like video editing, scene capturing etc., due to its ability to read and control global feature information. In this paper, we present a novel example-based, specifically energy optimization-based algorithm, to synthesize perspective textures. Energy optimization technique is a pixel-based approach, so it’s time-consuming. We improve it from two aspects with the purpose of achieving faster synthesis and high quality. Firstly, we change this pixel-based technique by replacing the pixel computation with a little patch. Secondly, we present a novel technique to accelerate searching nearest neighborhoods in energy optimization. Using k- means clustering technique to build a search tree to accelerate the search. Hence, we make use of principal component analysis (PCA) technique to reduce dimensions of input vectors. The high quality results prove that our approach is feasible. Besides, our proposed algorithm needs shorter time relative to other similar methods.  相似文献   
2.
The old age-related loss of immune tolerance inflicts a person with a wide range of autoimmune and inflammatory diseases. Dendritic cells (DCs) are the sentinels of the immune system that maintain immune tolerance through cytokines and regulatory T-cells generation. Aging disturbs the microbial composition of the gut, causing immune system dysregulation. However, the vis-à-vis role of gut dysbiosis on DCs tolerance remains highly elusive. Consequently, we studied the influence of aging on gut dysbiosis and its impact on the loss of DC tolerance. We show that DCs generated from either the aged (DCOld) or gut-dysbiotic young (DCDysbiotic) but not young (DCYoung) mice exhibited loss of tolerance, as evidenced by their failure to optimally induce the generation of Tregs and control the overactivation of CD4+ T cells. The mechanism deciphered for the loss of DCOld and DCDysbiotic tolerance was chiefly through the overactivation of NF-κB, impaired frequency of Tregs, upregulation in the level of pro-inflammatory molecules (IL-6, IL-1β, TNF-α, IL-12, IFN-γ), and decline in the anti-inflammatory moieties (IL-10, TGF-β, IL-4, IDO, arginase, NO, IRF-4, IRF-8, PDL1, BTLA4, ALDH2). Importantly, a significant decline in the frequency of the Lactobacillus genus was noticed in the gut. Replenishing the gut of old mice with the Lactobacillus plantarum reinvigorated the tolerogenic function of DCs through the rewiring of inflammatory and metabolic pathways. Thus, for the first time, we demonstrate the impact of age-related gut dysbiosis on the loss of DC tolerance. This finding may open avenues for therapeutic intervention for treating age-associated disorders with the Lactobacillus plantarum.  相似文献   
3.
A wide breadth of DNA content variation has been reported amongmaize lines. While the extent of this variation has been welldocumented, few studies have focused on its cause. Some of thenuclear DNA content variation has been explained by the presenceof B chromosomes or knobs. However, variation in these two structuresdoes not account for all of the observed variation. In orderto identify other fluctuating DNA sequences, a rapid and reliablemethod of estimating relative abundance of DNA sequences neededto be developed. The potential of flow cytometry in conjunctionwith spot hybridization for determining relative abundance ofspecific DNA sequences in maize was studied. Different numbersof G1 phase nuclei were sorted on nitrocellulose filters andnon-radioactive hybridization and signal detection performed.Results from these experiments revealed a significant, positivelinear correlation between the amount of target sequence andsignal density using both knob (R = 0.98) and ribosomal spacer(R =0.99) DNA sequences. In addition, G1 phase nuclei of eightinbred lines differing in the amount of knob heterochromatin,were sorted on to filters and the non-radioactive hybridizationand signal detection performed. A significant, positive linearcorrelation between C-band number and signal density (R =0.83;P = 0.0051) as well as between per cent heterochromatin andsignal density (R=0.96;P = 0.0002) was observed. These resultsindicate the usefulness of flow cytometry for spot hybridizationin determining the relative abundance of DNA sequences in themaize genome. Key words: Flow cytometry, copy number, non-isotope labelling, spot hybridization, flow sorting, Zea mays L.  相似文献   
4.
The temporal appearance and distribution of the Ca2+ + Mg2+ ATPase of the sarcoplasmic reticulum were determined in the developing chick heart (stage 9 to stage 16) by indirect immunofluorescence labeling. The results obtained showed that the Ca2+ + Mg2+ ATPase was first observed in the bulbus ventricular region of the single tubular heart at stage 9 to 10 of development, when these myocardial cells first contract. As the atrial and later the sinus venosus tissues became incorporated into the single tubular heart the Ca2+ + Mg2+ ATPase was also observed in these regions, however, the highest density of Ca2+ + Mg2+ ATPase labeling was generally observed in the region of the heart most recently incorporated. These results suggest that the sarcoplasmic reticulum is present and perhaps functional in the regulation of the cytoplasmic Ca2+ concentration and thereby the contraction-relaxation cycle in myocardial cells when the first contraction occurs, as well as throughout all subsequent stages of development. Furthermore comparison between the relative density and intensity of the Ca2+ + Mg2+ ATPase labeling and the intrinsic rate of contraction of the myocardial cells in the various regions of the heart (A. Barry, 1942, J. Exp. Zool. 91, 119-130) supports the possibility that a positive correlation exists between these two characteristics of the myocardial cells.  相似文献   
5.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD+-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.  相似文献   
7.
Immunochromatographic strip test is a unique type of rapid test that has been developed for use as part of a diagnostic kit for the rapid detection of antibodies and/or other proteins of interest. For the detection of target proteins, most of the commercial tests are assembled based on the conjugation of colloidal gold particles to monoclonal antibodies embedded within the conjugate pad of a strip test. In this study, we tested the novel concept of using an artificial non-antibody structure for generating a colloidal gold conjugate (CGC). We exploited the property of an ankyrin repeat protein that specifically binds to the HIV-1 capsid protein termed AnkGAG1D4. This construct was applied as a model structure to create Ank1D4-CGC and used as a new type of visible detector system and termed it ankyrin-based immunochromatographic strip (ABIS) test. The ABIS test was shown to be highly sensitive with a lower limit of detection of the target protein at 0.1 μg/ml. Moreover, the ABIS test was not only highly sensitive but also shared a level of specificity within the same range of the commercial test kit. The results of the studies presented herein therefore demonstrate the novel application of an artificial non-immunoglobulin structure (ankyrin repeat protein) as the new line of a visible detector using a rapid diagnostic test with characteristics that have the potential to be superior to those that utilize antibody-based tests.  相似文献   
8.
9.

Nitrogen (N) is the basis of plant growth and development and, is considered as one of the priming agents to elevate a range of stresses. Plants use solar radiations through photosynthesis, which amasses the assimilatory components of crop yield to meet the global demand for food. Nitrogen is the main regulator in the allocation of photosynthetic apparatus which changes of the photosynthesis (Pn) and quantum yield (Fv/Fm) of the plant. In the present study, dynamics of the photosynthetic establishment, N-dependent relation with chlorophyll fluorescence attributes and Rubisco efficacy was evaluated in low-N tolerant (cv. CR Dhan 311) and low-N sensitive (cv. Rasi) rice cultivars under low-N and optimum-N conditions. There was a decrease in the stored leaf N under low-N condition, resulting in the decreased Pn and Fv/Fm efficiency of the plants through depletion in the activity and content of Rubisco. The Pn and Fv/Fm followed the parallel trend of leaf N content during low-N condition along with depletion of intercellular CO2 concentration and overall conductance under low-N condition. Photosynthetic saturation curve cleared abrupt decrease of effective quantum yield in the low-N sensitive rice cultivar than the low-N tolerant rice. Also, the rapid light curve highlighted the unacclimated regulation of photochemical and non-photochemical quenching in the low-N condition. The low-N sensitive rice cultivar triumphed non-photochemical quenching, whereas the low-N tolerant rice cultivar rose gradually during the light curve. Our study suggested that the quantum yield is the key limitation for photosynthesis in low-N condition. Regulation of Rubisco, photochemical and non-photochemical quenching may help plants to grow under low-N level.

  相似文献   
10.
Tristeza is a devastating viral disease in all the citrus growing countries throughout the world and has killed millions of citrus trees in severely affected orchards. The citrus species grafted on sour orange rootstock are affected by this disease. Predominantly, the sweet orange, grapefruit and lime trees grafted on sour orange exhibit severe symptoms like quick decline, vein clearing, pin holing, bark scaling and degeneration leading to variable symptoms. Symptomatic expression of Citrus tristeza virus (CTV) in different hosts has been attributed to virus isolates which are from severe to mild. Different serological and molecular assays have been deployed to differentiate the strains of CTV. Citrus tristeza virus is diversified towards its strains on the basis of biological, serological and molecular characterization. Phenotypic expression is due to genetic alteration and different molecular basis have now been adopted for strain differentiation. This review will give a brief idea about the different CTV isolates, their characterization based on nucleic acid and serological assays. Different methods along with salient features for strain characterization has also been reviewed. This review will also open the new aspects towards formulation of management strategies through different detection techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号