首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   18篇
  265篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   11篇
  2019年   16篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   21篇
  2013年   17篇
  2012年   25篇
  2011年   20篇
  2010年   9篇
  2009年   12篇
  2008年   16篇
  2007年   14篇
  2006年   15篇
  2005年   11篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
101.
102.
In vitro propagation of osteoblasts in three-dimensional culture has been explored as a means of cell line expansion and tissue engineering purposes. Studies investigating optimal culture conditions are being conducted to produce bone-like material. This study demonstrates the use of collagen microcarrier beads as a substrate for three-dimensional cell culture. We have earlier reported that microcarriers consisting of cross-linked type I collagen support chondrocyte proliferation and synthesis of extracellular matrix. In this study, we investigated the use of collagen microcarriers to propagate human trabecular bone-derived osteoblasts. Aggregation of cell-seeded microcarriers and production of extracellular matrix-like material were observed after 5 d in culture. Expression of extracellular matrix proteins osteocalcin, osteopontin, and type I collagen was confirmed by messenger ribonucleic acid analysis, radioimmunoassay, and Western blot analysis. The efficient recovery of viable cells was achieved by collagenase digestion of the cell-seeded microcarriers. The collagen microcarrier spinner culture system provides an efficient method to amplify large numbers of healthy functional cells that can be subsequently used for further in vitro or transplantation studies.  相似文献   
103.
We explore the interplay between tunneling process and chiral interactions in the discrimination of chiral states for an ensemble of molecules in a biological environment. Each molecule is described by an asymmetric double-well potential and the environment is modeled as a bath of harmonic oscillators. We carefully analyze different time-scales appearing in the resulting master equation at both weak- and strong-coupling limits. The corresponding results are accompanied by a set of coupled differential equations characterizing optical activity of the molecules. We show that, at the weak-coupling limit, chiral interactions prohibit the coherent racemization induced by decoherence effects and thus preserve the initial chiral state. At the strong-coupling limit, considering the memory effects of the environment, Markovian behavior is observed at long times.  相似文献   
104.
Regulation of angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. We started from an observation that the 3′-untranslated region (3′-UTR) of AT1R mRNA suppressed AT1R translation. Using affinity purification for the separation of 3′-UTR-binding proteins and mass spectrometry for their identification, we describe glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an AT1R 3′-UTR-binding protein. RNA electrophoretic mobility shift analysis with purified GAPDH further demonstrated a direct interaction with the 3′-UTR while GAPDH immunoprecipitation confirmed this interaction with endogenous AT1R mRNA. GAPDH-binding site was mapped to 1–100 of 3′-UTR. GAPDH-bound target mRNAs were identified by expression array hybridization. Analysis of secondary structures shared among GAPDH targets led to the identification of a RNA motif rich in adenines and uracils. Silencing of GAPDH increased the expression of both endogenous and transfected AT1R. Similarly, a decrease in GAPDH expression by H2O2 led to an increased level of AT1R expression. Consistent with GAPDH having a central role in H2O2-mediated AT1R regulation, both the deletion of GAPDH-binding site and GAPDH overexpression attenuated the effect of H2O2 on AT1R mRNA. Taken together, GAPDH is a translational suppressor of AT1R and mediates the effect of H2O2 on AT1R mRNA.  相似文献   
105.
Cytokine-induced beta cell destruction may be mediated by the generation of nitric oxide and/or reactive oxygen species. The relative importance of NO and ROS in cytokine-induced beta cell pathophysiology remains unclear. This investigation evaluates and contrasts the cytoprotective potential of antioxidant gene transfer, versus NF-kappaB inhibition, using a degradation-resistant mutant of IkappaBalpha. NF-kappaB inhibition conferred significant protection against cytokine-induced damage whereas antioxidant overexpression failed to provide protection. Conferred cytoprotection was associated with a suppression of iNOS activation and nitrite accumulation. Our data implicates iNOS, as opposed to ROS, as the pivotal player in cytokine-induced beta cell damage. From a therapeutic standpoint, strategies aimed at targeting the activation of iNOS may harbor therapeutic potential in preserving beta cell survival in the face of proinflammatory cytokine exposure.  相似文献   
106.
Shc adapter proteins are thought to regulate cellular proliferation, differentiation and apoptosis by activating the SOS-Grb2-RAS-MAPK signaling cascade. Using the small hairpin RNA (shRNA) technique, we found that decreasing ShcA mRNA reduced the proliferative ability of HEK293 mammalian culture cells. We then recapitulated phosphorylation-dependent Shc-Grb2 complex formation in Saccharomyces cerevisiae. Immunoprecipitation followed by Western analysis demonstrated that activated TrkB, composed of the intracellular domain of TrkB fused to glutathione S-transferase (GST-TrkB(ICD)), promoted the association of ShcC and Grb2 in yeast. The Ras-recruitment system (RRS), in which a myristoylated (Myr)-bait and son of sevenless (hSOS)-prey are brought together to complement the defective Ras-cAMP pathway in a thermosensitive cdc25H mutant yeast strain, was used to validate a phenotypic assay. Yeast cells transformed with both Myr-ShcC and hSOS-Grb2 (referred to as scheme 1) or Myr-Grb2 and hSOS-ShcC (scheme 2) did not grow at non-permissive temperature; the additional transformation of GST-TrkB(ICD) enabled growth. GST-TrkB(ICD) also enabled growth with hSOS-Grb2 and either Myr-ShcA or Myr-SHP2. Mutational analysis of TrkB showed that its kinase activity was essential for complementation, while its docking site for Shc proteins was not. Mutational analysis of ShcC showed that the PTB and SH2 domains were not essential for complementation but phosphorylation at Y304 in the CH1 domain was. Phosphorylation at Y304 could not be substituted by an acidic amino acid. The RRS provides a genetic system to probe Shc proteins and potentially identify member specific protein partners and pharmacological reagents.  相似文献   
107.
Some novel inhibitors based on the (benzo[d]thiazol-2-yl)-1-phenylmethanimine derivatives were designed to reduce the aggregation process in Alzheimer's disease. These structures seem to mimic stilbene-like scaffold, while the benzothiazole moiety “locks” the thioflavin T binding site. Other inhibitors were designed based on 2-((benzo[d]thiazol-2-ylimino)methyl)-5-(benzyloxy)-1-methylpyridin-4(H)-one derivatives. Benzo[d]thiazol-2-amine derivatives were prepared by the reaction of aniline derivatives with ammonium thiocyanate in the presence of bromine/acetic acid. Then, the reaction of amines with benzaldehyde derivatives and 5-(benzyloxy)-1-methyl-4-oxo-1,4-dihydropyridine-2-carbaldehyde gave the desired compounds. The plate reader-based fibrillation assay was done to evaluate the inhibition of Aβ aggregation. Also, molecular dynamic simulation was carried out to clarify the interaction manner of the designed compounds with Aβ formation. The biological evaluation proved 5a and 7e as the best inhibitor of the Aβ aggregation. compound 5a in the concentration of 50 μM inhibited Aβ fibril formation better than 7e . MD simulation elucidated that the Aβ aggregation inhibitors in different concentrations represented different binding conformations throughout the entire or in one area of Aβ. MD showed the ligands in lower concentrations accumulate in an area of Aβ aggregations and separate one fibril from the aggregated Aβ. On the contrary, in higher concentrations, the ligands tend to be located through the entire Aβ.  相似文献   
108.
Molecular and Cellular Biochemistry - Aberrant structural formations of Cu/Zn superoxide dismutase enzyme (SOD1) are the probable mechanism by which circumscribed mutations in the SOD1 gene cause...  相似文献   
109.
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine and a selective inducer of apoptosis in a range of tumour cells, but not in normal, untransformed cells. A large number of chemotherapeutics as well as biological agents are being tested for their potential to sensitise resistant tumour cells to TRAIL as a means to broaden the range of tumours treatable with TRAIL. However, because of the incomplete understanding of the mechanism(s) underlying TRAIL resistance in non-malignant cells, it is unpredictable whether the effect of these sensitisers will be restricted to tumour cells or they would also sensitise non-transformed cells causing unwanted toxicity. In this study, we carried out a systematic analysis of the mechanisms driving TRAIL resistance in non-transformed cells. We found that cellular FLICE-like inhibitory protein, anti-apoptotic B-cell lymphoma 2 proteins, and X-linked inhibitor of apoptosis protein were independently able to provide resistance to TRAIL. Deficiency of only one of these proteins was not sufficient to elicit TRAIL sensitivity, demonstrating that in non-transformed cells multiple pathways control TRAIL resistance and they act in a redundant manner. This is contrary to the resistance mechanisms found in tumour cell types, many of them tend to rely on a single mechanism of resistance. Supporting this notion we found that 76% of TRAIL-resistant cell lines (13 out of 17) expressed only one of the above-identified anti-apoptotic proteins at a high level (≥1.2-fold higher than the mean expression across all cell lines). Furthermore, inhibition or knockdown of the single overexpressed protein in these tumour cells was sufficient to trigger TRAIL sensitivity. Therefore, the redundancy in resistance pathways in non-transformed cells may offer a safe therapeutic window for TRAIL-based combination therapies where selective sensitisation of the tumour to TRAIL can be achieved by targeting the single non-redundant resistance pathway.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号