首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   6篇
  143篇
  2024年   1篇
  2023年   1篇
  2022年   11篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2018年   10篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   10篇
  2013年   17篇
  2012年   12篇
  2011年   8篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
排序方式: 共有143条查询结果,搜索用时 0 毫秒
11.
Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg−1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.  相似文献   
12.
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We therefore investigated molecular mechanisms involved in CXCR2-driven cancer progression by comparing CXCR2 positive and negative ovarian cancer cell lines. Stably CXCR2 transfected SKOV-3 cells had a faster growth rate as compared to control cells transfected with empty vector. Particularly, tumor necrosis factor (TNF), abundantly expressed in ovarian cancer, enhanced cell proliferation by decreasing the G0-G1 phase in CXCR2 transfected cells. TNF increased nuclear factor-κB (NF-κB) activity to a greater degree in CXCR2 transfected cells than control cells as well as provided a greater activation of IκB. CXCR2 transfected cells expressed higher levels of its proinflammatory ligands, CXCL1/2 and enhanced more proliferation, migration, invasion and colony formation. CXCR2 positive cells also activated more EGFR, which led to higher Akt activation. Enhanced NF-κB activity in CXCR2 positive cells was reduced by a PI3K/Akt inhibitor rather than an Erk inhibitor. CXCL1 added to CXCR2 positive cells led to an increased activation of IκB. CXCL1 also led to a significantly greater number of invasive cells in CXCR2 transfected cells, which was blocked by the NF-κB inhibitor, Bay 11-7082. In addition, enhanced cell proliferation in CXCR2 positive cells was more sensitive to CXCL1 antibody or an NF-κB inhibitor. Finally, CXCR2 transfection of parental cells increased CXCL1 promoter activity via an NF-κB site. Thus augmentation of proinflammatory chemokines CXCL1/2, by potentiating NF-κB activation through EGFR-transactivated Akt, contributes to CXCR2-driven ovarian cancer progression.  相似文献   
13.
Widespread use of cerium oxide (CeO2) nanoparticles (NPs) is found in almost all areas of research due to their distinctive properties. CeO2 NPs synthesized via green chemistry have been characterized for antioxidant, phytochemical, and biological potential. Physical characterization through scanning electron microscopy, XRD, and TGA showed that the NPs are circular in shape, 20‐25 nm in size, and stable in a wide range of temperature. NPs display significant antioxidant (32.7% free radical scavenging activity) and antileishmanial (IC50 48 µg mL?1) properties. In vitro toxicity tested against lymphocytes verified that NPs are biocompatible (99.38% viability of lymphocytes at 2.5 μg mL?1). In vivo toxicity experiments showed no harmful effects on rat serum chemistry and histology of various organs and did not even change the concentration of antioxidative enzymes, total protein contents, lipid peroxidation, and nitrosative stress. These observations are in line with the statement that plant‐based synthesis of CeO2 NPs lessens or nullifies in vitro and in vivo toxicity and hence CeO2 NPs are regarded as a safe and biocompatible material to be used in drug delivery.  相似文献   
14.
BackgroundSeveral developing countries like Pakistan step into Sustainable Development Goals period with crucial maternal and child health needs that need to be addressed for improving health outcomes among people. We aim to explore existent socio-economic disparities in use of family planning methods (FPM) among Pakistani women, and compare any such inequalities between the years 2006 and 2013.SettingPakistan Demographic and Health Surveys (PDHS) 2006–7 (n = 9177) and the most recent 2012–13(n = 13558) data were used to conduct secondary analysis. Participants were ever married women aged between 15 and 49 years. Socio-economic status was assessed by the education level and wealth index. Inequalities were measured through Odds Ratio (OR), Relative Index of inequality (RII), and Slope index of inequality (SII) on non-use of FPM.ResultsAlthough the prevalence of FPM use has increased over time (28% in 2006 versus 54% in 2013), the socio-economic inequalities persistently exist. Comparing results of PDHS 2006 with PDHS 2013, education related absolute inequalities among urban dwellers increased from -0.41 (95% CI -0.67, -0.13, p-value < 0.01) to -0.83 (95% CI -1.02, -0.63, p-value < 0.01); and increased from -0.93 (95% CI -1.21, -0.64, p-value < 0.01) to -0.98 (95% CI -1.20, -0.76, p-value < 0.01) among rural dwellers. Similarly wealth related absolute inequalities are also existent.ConclusionsAlthough the FPM use has increased over time, but it is important to note that socio-economic gap in use of FPM persists. Such differences have disadvantaged the poor and the illiterate. Family planning programs may target the disadvantaged subgroups for ensuring well-being of women and children in Pakistan.  相似文献   
15.
Two new natural triterpenes, lantaninilic acid and lantoic acid, along with the known triterpenes lantadene A, and oleanolic, ursolic, betulinic, lantanolic, and camaric acid, were obtained from the aerial parts of Lantana camara through bioassay‐guided isolation, monitoring the in vitro antileishmanial activity against promastigotes of Leishmania major. Oleanolic acid ( 3 ), ursolic acid ( 4 ), lantadene A ( 5 ), and lantanilic acid ( 7 ) showed significant leishmanicidal activities with IC50 values of 53.0, 12.4, 20.4, and 21.3 μM , respectively. The IC50 value of ursolic acid ( 4 ; 12.4 μM ) was found to be comparable with that of the standard drugs, pentamidine (IC50 15.0 μM ) and amphotericin B (IC50 0.31 μM ). The in vitro activities of L. camara and its constituents against promastigotes of Leishmania major are reported here for the first time.  相似文献   
16.
Familial Hypercholesterolemia (FH) results in elevated levels of blood lipids including total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) with normal triglycerides (TG). This disease is one of the major contributors towards an early onset of coronary heart disease (CHD). The aim of the present study was to identify the genes responsible for causing FH in Pakistani population, for this purpose a large consanguineous FH family was selected for genetic analysis. Serum lipid levels, including TC, TG, LDL-C and high density lipoprotein cholesterol (HDL-C), were determined in patients and healthy controls. In order to find the causative mutation in this family, direct sequencing of the low density lipoprotein receptor (LDLR) gene was performed. In addition the part of the Apolipoprotein-B (APOB) gene containing the mutations R3500Q and R3500W was also sequenced. Affected individuals of the family were found to have raised TC and LDL-C levels. Sequencing revealed an insertion mutation (c.2416_2417InsG) in exon 17 of the LDLR gene in all the affected individuals of the family. Common FH causing APOB mutations were not present in this family. Heterozygous individuals had TC levels ranging from ~300–500 mg/dl and the only homozygous individual with typical xanthomas had TC levels exceeding 900 mg/dl. This is the first report of a known LDLR gene mutation causing FH in the Pakistani population. Despite a large heterogeneity of LDLR mutations there are still some common mutations which are responsible for FH throughout the world.  相似文献   
17.
The development of therapeutic inhibitors of key signaling pathways has been hampered by the inability to assess the effect of a drug on its target in the patient. 17-allylaminogeldanamycin (17-AAG) is the first Hsp90 inhibitor to be tested in a clinical trial. It causes the degradation of HER2 and other Hsp90 targets, and has antitumor activity in preclinical models. We have developed a method for imaging the inhibition of Hsp90 by 17-AAG. We labeled an F(ab')2 fragment of the anti-HER2 antibody Herceptin with 68Ga, a positron emitter, which allows the sequential positron-emission tomographic imaging of HER2 expression. We have used this method to quantify as a function of time the loss and recovery of HER2 induced by 17-AAG in animal tumors. This approach allows noninvasive imaging of the pharmacodynamics of a targeted drug and will facilitate the rational design of combination therapy based on target inhibition.  相似文献   
18.
Barley (Hordeum vulgare L.) is a major cereal grain and is known as a halophyte (a halophyte is a salt-tolerant plant that grows in soil or waters of high salinity). We therefore conducted a pot experiment to explore plant growth and biomass, photosynthetic pigments, gas exchange attributes, stomatal properties, oxidative stress and antioxidant response and their associated gene expression and absorption of ions in H. Vulgare. The soil used for this analysis was artificially spiked at different salinity concentrations (0, 50, 100 and 150 mM) and different levels of ascorbic acid (AsA) were supplied to plants (0, 30 and 60 mM) shortly after germination of the seed. The results of the present study showed that plant growth and biomass, photosynthetic pigments, gas exchange parameters, stomatal properties and ion uptake were significantly (p < 0.05) reduced by salinity stress, whereas oxidative stress was induced in plants by generating the concentration of reactive oxygen species (ROS) in plant cells/tissues compared to plants grown in the control treatment. Initially, the activity of antioxidant enzymes and relative gene expression increased to a saline level of 100 mM, and then decreased significantly (P < 0.05) by increasing the saline level (150 mM) in the soil compared to plants grown at 0 mM of salinity. We also elucidated that negative impact of salt stress in H. vulgare plants can overcome by the exogenous application of AsA, which not only increased morpho-physiological traits but decreased oxidative stress in the plants by increasing activities of enzymatic antioxidants. We have also explained the negative effect of salt stress on H. vulgare can decrease by exogenous application of AsA, which not only improved morpho-physiological characteristics, ions accumulation in the roots and shoots of the plants, but decreased oxidative stress in plants by increasing antioxidant compounds (enzymatic and non-enzymatic). Taken together, recognizing AsA's role in nutrient uptake introduces new possibilities for agricultural use of this compound and provides a valuable basis for improving plant tolerance and adaptability to potential salinity stress adjustment.  相似文献   
19.
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is a chronic infectious disease. Interferon-gamma (IFN-γ) is an important cytokine imparting resistance to mycobacterial diseases. It is believed that IFN-γ and Interleukin-10 (IL-10) play divergent roles in the host immune system against MTB infection. IL-10 is an important inhibitory cytokine and helps balancing the inflammatory and immune responses. IL-10 is involved in down regulation of Th1 cytokines, MHC class II antigen and co-stimulatory molecular expression on macrophages, while IFN-γ results in macrophage activation allowing them to exert the microbicidal role. The objectives were to find out the association of IL-10 (?1082 A/G) and IFN-γ (+874 A/T) single nucleotide polymorphisms (SNPs) with extrapulmonary tuberculosis in ethnic Kashmiri population. A total of 100 extrapulmonary tuberculosis cases and 102 healthy controls were analyzed for IL-10 (?1082 A/G) and IFN- γ (+874 A/T) SNPs using Allele-Specific PCR. We found a significant association of IFN-γ + 874 ‘TT’ genotype with extrapulmonary tuberculosis (p = 0.006) and in case of IL-10 (?1082 A/G) we found a significant association with extrapulmonary tuberculosis under recessive model (GG vs GA + AA) (p = 0.03) in Kashmiri population. IL-10 (?1082 A/G) and IFN-γ (+874 A/T) have a significant association with extrapulmonary tuberculosis in ethnic Kashmiri population.  相似文献   
20.
Recent industrialization has increased human exposure to bio-available aluminum (Al). If more Al enters the brain than leaves, Al concentration will rise in the brain leading to neurodegenerative disorders. The aim of the present study was to determine Al concentration, neurodegeneration, and nicotinic acetylcholine receptor (nAChR) gene expression in the cortex and amygdala after oral ingestion of Al salt. The effect of Al on cortex- and amygdala-dependent learning and memory functions was also assessed. Mice were given AlCl3 (250 mg/kg) in drinking water for 42 days. nAChR gene expression was determined in the cortex and amygdala. The mice were subjected to behavior tests (fear conditioning, fear extinction, and open field), to assess memory deficits. The acquisition of fear memory in the fear conditioning test remained unaffected due to the Al administration. However, fear extinction (which is a new learning) was severely impaired. The behavioral analysis in the open field test showed greater anxiety and less adaptability to the new environment in Al-treated animals. High Al concentration and severe neurodegeneration in the cortex were observed following Al treatment while a slight, non-significant elevation in Al concentration was observed in the amygdala of Al-treated animals. The analysis of nAChR gene expression via RT-PCR showed a significant reduction in expression of α7, α4, and β2 nAChR genes in the cortex of Al-treated animals, while in the amygdala, the level of the α4 nAChR gene remained unaltered. Oral Al ingestion causes neuropathological changes and suppresses expression of nAChR genes that lead to deficits in learning and higher anxiety in Al-treated animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号