首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   47篇
  国内免费   1篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   7篇
  2020年   13篇
  2019年   7篇
  2018年   18篇
  2017年   9篇
  2016年   17篇
  2015年   31篇
  2014年   36篇
  2013年   44篇
  2012年   53篇
  2011年   26篇
  2010年   29篇
  2009年   20篇
  2008年   23篇
  2007年   28篇
  2006年   18篇
  2005年   13篇
  2004年   22篇
  2003年   12篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   6篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
  1975年   3篇
  1974年   1篇
  1966年   2篇
  1965年   2篇
  1962年   1篇
排序方式: 共有558条查询结果,搜索用时 31 毫秒
81.
Bioprocess and Biosystems Engineering - Conventional biosurfactants have high production costs. Therefore, the use of low-cost carbon sources for their production is attractive for industry. The...  相似文献   
82.

Background

Newcastle disease (ND) outbreaks are global challenges to the poultry industry. Effective management requires rapid identification and virulence prediction of the circulating Newcastle disease viruses (NDV), the causative agent of ND. However, these diagnostics are hindered by the genetic diversity and rapid evolution of NDVs.

Methods

An amplicon sequencing (AmpSeq) workflow for virulence and genotype prediction of NDV samples using a third-generation, real-time DNA sequencing platform is described here. 1D MinION sequencing of barcoded NDV amplicons was performed using 33 egg-grown isolates, (15 NDV genotypes), and 15 clinical swab samples collected from field outbreaks. Assembly-based data analysis was performed in a customized, Galaxy-based AmpSeq workflow. MinION-based results were compared to previously published sequences and to sequences obtained using a previously published Illumina MiSeq workflow.

Results

For all egg-grown isolates, NDV was detected and virulence and genotype were accurately predicted. For clinical samples, NDV was detected in ten of eleven NDV samples. Six of the clinical samples contained two mixed genotypes as determined by MiSeq, of which the MinION method detected both genotypes in four samples. Additionally, testing a dilution series of one NDV isolate resulted in NDV detection in a dilution as low as 101 50% egg infectious dose per milliliter. This was accomplished in as little as 7 min of sequencing time, with a 98.37% sequence identity compared to the expected consensus obtained by MiSeq.

Conclusion

The depth of sequencing, fast sequencing capabilities, accuracy of the consensus sequences, and the low cost of multiplexing allowed for effective virulence prediction and genotype identification of NDVs currently circulating worldwide. The sensitivity of this protocol was preliminary tested using only one genotype. After more extensive evaluation of the sensitivity and specificity, this protocol will likely be applicable to the detection and characterization of NDV.
  相似文献   
83.
Poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132) is a water-soluble organogermanium compound that exerts various physiological effects, including anti-inflammatory activity and pain relief. In water, Ge-132 is hydrolyzed to 3-(trihydroxygermyl)propanoic acid (THGP), which in turn is capable of interacting with cis-diol compounds through its trihydroxy group, indicating that this compound could also interact with diol-containing nucleic acid constituents. In this study, we evaluated the ability of THGP to interact with nucleosides or nucleotides via nuclear magnetic resonance (NMR) analysis. In addition, we evaluated the effect of added THGP on the enzymatic activity of adenosine deaminase (ADA) when using adenosine or 2′-deoxyadenosine as a substrate. In solution, THGP indeed formed complexes with nucleotides or nucleosides through their cis-diol group. Moreover, the ability of THGP to form complexes with nucleotides was influenced by the number of phosphate groups present on the ribose moiety. Notably, THGP also inhibited the catalysis of adenosine by ADA in a concentration-dependent manner. Thus, interactions between THGP and important biological nucleic acid constituents might be implicated in the physiological effects of Ge-132.  相似文献   
84.
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.  相似文献   
85.
The presence and distribution of 125I-vasoactive intestinal polypeptide (VIP) binding sites in blood vessels supplying the hamster seminal vesicle was studied using a receptor autoradiographic technique before and following castration. 125I-VIP binding was studied in intact animals, in animals under a 15-day period of castration and in animals under the same period of castration but submitted to a further 15-day period of testosterone treatment.Our results show that, in the seminal vesicle, VIP-binding sites are localized in the gland smooth muscle coat and arterial smooth muscle. A 15-day castration period abolishes 125I-VIP binding to vascular smooth muscle but has no effect on 125I-VIP binding to the gland smooth muscle coat. Treatment with testosterone restores 125I-VIP binding to the vascular smooth muscle, completely reversing the effect of castration.Our results indicate that VIP-binding sites in the smooth muscle wall of arteries supplying the hamster seminal vesicle are under androgenic control and are more sensitive to androgen deprivation that VIP-binding sites associated to the gland smooth muscle coat.  相似文献   
86.
The COVID-19 pandemic has presented significant challenges and implications for the sports community. Thus, this study aimed to describe the prevalence of COVID-19 in Brazilian athletes and identify the epidemiological, clinical, athletic, life and health factors associated with the disease in these individuals. A cross-sectional study was performed involving 414 athletes from 22 different sports using an online questionnaire from August to November 2020. The association between the athletes’ characteristics and COVID-19 was evaluated using a logistic regression model. The prevalence of COVID-19 was 8.5%, although only 40% of athletes reported having been tested. Being under 27 years of age (3-fold), having children (~5-fold), having a teammate test positive for COVID-19 (2.5-fold), and smoking (14-fold) were associated with a possible higher risk of disease. Almost 20% of athletes self-reported musculoskeletal injuries during the period of the pandemic that was studied. Athletes with a university education (P = 0.02), a profession other than sports (P < 0.001), those from a low-income family (P = 0.01), and public health system users (P = 0.04) were significantly less frequently tested for COVID-19, whereas international competitors, athletes who received a wage, and athletes who had a teammate who tested positive for COVID-19 were 2-, 3-, and 15-fold more likely to be tested for COVID-19, respectively. Approximately 26% of the athletes who tested negative or were untested reported more than three characteristic COVID-19 symptoms, and 11% of athletes who tested positive for COVID-19 were asymptomatic. The identification of modifiable (have children, smoking, and teammates positively tested) and non-modifiable (age under 27 years) factors related to COVID-19 in athletes can contribute to implementing surveillance programmes to decrease the incidence of COVID-19 in athletes and its negative impacts in sports.  相似文献   
87.
Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients’ striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.Subject terms: Diseases of the nervous system, Molecular neuroscience  相似文献   
88.
Hyperpalatable diets (HP) impair brain metabolism, and regular physical exercise has an apparent opposite effect. Here, we combined a prior long-term exposure to HP diet followed by physical exercise and evaluated the impact on some neuroenergetic components and on cognitive performance. We assessed the extracellular lactate concentration, expression of monocarboxylate transporters (MCTs), pyruvate dehydrogenase (PDH), and mitochondrial function in the hippocampus. Male C57BL/6J mice were fed 4 months with HP or a control diet. Subsequently, they were divided in the following groups: control diet sedentary (CDS), control diet exercise (CDE), HP diet sedentary (HPS), and HP diet exercise (HPE) (n = 15 per group) and were engaged for an additional 30-day period of voluntary exercise and HP diet. Relative to the control situation, exercise increased MCT1, MCT4, and PDH protein levels, while the HP diet increased MCT1 and MCT4 protein levels. The production of hydrogen peroxide (H2O2) and the mitochondrial membrane potential (??m) stimulated by succinate in hippocampal homogenates were not significantly different between groups. ADP phosphorylation and the maximal respiratory rate induced by FCCP showed similar responses between groups, implying a normal mitochondrial function. Also, extracellular brain lactate levels were increased in the HPE group compared to other groups soon after performing the Y-maze task. However, such enhanced lactate levels were not associated with improved memory performance. In summary, hippocampal protein expression levels of MCT1 and 4 were increased by physical exercise and HP diet, whereas PDH was only increased by exercise. These observations indicate that a hippocampal metabolic reprogramming takes place in response to these environmental factors.  相似文献   
89.
Mussels Perna perna were exposed to air for 24 h showing a clear increase in the levels of lipid peroxidation and oxidative DNA damage, measured as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). The levels of lipid peroxidation increased both in the digestive gland and gills, while oxidative DNA damage increased only in the gills. After the 24 h of air exposure, mussels were re-submersed for a period of 3 h, leading values to return to a pre-aerial exposure levels. Control animals were kept immersed during the whole period. Several antioxidant and complementary enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), glutathione S-transferase (GST) and the levels of total glutathione (Total GSH) were assayed in a second set of experiments where one group of mussels were exposed to air for 18 h and other to 1 h re-submersion after 18 h aerial exposure. Only a 52% increase in the glutathione S-transferase activity was observed in the digestive gland, which remained elevated to about 40% after 1 h re-submersion, showing that defense systems can be modulated even during oxygen deprivation in P. perna. The DNA and lipid oxidative damage observed after aerial exposure indicates that mussels face an oxidative challenge, and are able to counteract such an “insult” as values of lipid peroxidation and DNA damage returned to control values after 3 h re-submersion.  相似文献   
90.
It is generally considered that stress causes decreased immune function in fish. In this study we examined in Atlantic salmon (Salmo salar Linnaeus) the effects of both short- (a single 15s out of water) and long-term (4 weeks of daily handling 15s out of water) stress on plasma cortisol (free and total) and glucose levels, expression of interleukin-1beta (IL-1beta) and survival of head kidney (HK) macrophages under culture with Aeromonas salmonicida. In the short-term study, samples were collected prior to the application of the stressor, and at 1, 3, 6, 12 and 24h post stress. Free and total plasma cortisol levels and the percentage of free cortisol increased significantly in the stressed group at 1 and 3h post stress. Plasma glucose levels were significantly higher than those of control fish at 1, 3 and 6h post stress. Constitutive expression of IL-1beta in macrophages isolated from head kidneys in stressed fish was significantly higher at 1 and 3h post stress. However, lipopolysaccharide (LPS) stimulated expression of IL-1beta in HK macrophages, exhibited significantly higher fold increases in unstressed fish compared to stressed fish. In the long-term study, with the exception of an increase in plasma glucose levels at 1 week, there were no significant differences in stress parameters between groups. There was a significantly higher constitutive IL-1beta expression in macrophages isolated from stressed fish over the first 2 weeks. At weeks 1, 2 and 3 the magnitude of IL-1beta response of isolated HK macrophages to LPS stimulation was reduced in >90% of the stressed fish. At 4 weeks there was no significant difference in inducible IL-1beta expression between the groups. Macrophages isolated from stressed fish also showed significantly decreased survival when exposed to A. salmonicida. This study shows a clear pattern from repeated handling stress, whereby effects on immune cells begin with increased constitutive expression of IL-1beta, followed by decreased stimulation of leucocytes by extracellular antigen, and finally decreased leukocyte survival when exposed to A. salmonicida. The implications of these changes in the immune system will be discussed with respect to the use of classical indicators of stress to predict possible effects on the immune system of fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号