首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   39篇
  2022年   4篇
  2021年   2篇
  2019年   3篇
  2018年   6篇
  2017年   8篇
  2016年   14篇
  2015年   28篇
  2014年   26篇
  2013年   26篇
  2012年   33篇
  2011年   26篇
  2010年   23篇
  2009年   26篇
  2008年   21篇
  2007年   33篇
  2006年   25篇
  2005年   22篇
  2004年   16篇
  2003年   23篇
  2002年   11篇
  2001年   13篇
  2000年   15篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有506条查询结果,搜索用时 31 毫秒
71.
72.
Head kinematics during aquatic feeding of the Australian long-necked turtle (Chelodina) were studied by means of high speed video recordings. Buccal expansion was assessed by calculation of elliptical cross-sectional surfaces. Further, displacements of head, carapace, and prey in the earth bound frame, of the prey relative to the center of the gape, and of the head relative to the carapace were determined. Rates of change (velocities) of all these variables were calculated. These data are combined with information on the osteology and myology of the head. The robust development of the large hyobranchial apparatus, the massive intercornuatus muscle, and the presence of the branchiosquamosus muscle were related to aquatic feeding skills. Head kinematics are variable in amplitude and relative timing, but proceed always in a rostrocaudal sequence. According to their effect on the prey, two components are distinguished in the process of expansion. The first compensates for head/body movements (compensatory suction). The second causes distinct acceleration of water and prey (inertial suction). The latter component is mainly driven by the abduction of the second branchial arch. In spite of largely different structural solutions, optimal feeding conditions as deduced for suction in feeding fishes are also employed by Chelodina. This further promotes the assumption that hydrodynamics constrain evolutive solutions for aquatic feeding. J. Morphol. 233:113–125, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
73.
74.
Climate warming is pronounced in the Arctic and migratory birds are expected to be among the most affected species. We examined the effects of local and regional climatic variations on the breeding phenology and reproductive success of greater snow geese ( Chen caerulescens atlantica ), a migratory species nesting in the Canadian Arctic. We used a long-term dataset based on the monitoring of 5447 nests and the measurements of 19 234 goslings over 16 years (1989–2004) on Bylot Island. About 50% of variation in the reproductive phenology of individuals was explained by spring climatic factors. High mean temperatures and, to a lesser extent, low snow cover in spring were associated with an increase in nest density and early egg-laying and hatching dates. High temperature in spring and high early summer rainfall were positively related to nesting success. These effects may result from a reduction in egg predation rate when the density of nesting geese is high and when increased water availability allows females to stay close to their nest during incubation recesses. Summer brood loss and production of young at the end of the summer increased when values of the summer Arctic Oscillation (AO) index were either very positive (low temperatures) or very negative (high temperatures), indicating that these components of the breeding success were most influenced by the regional summer climate. Gosling mass and size near fledging were reduced in years with high spring temperatures. This effect is likely due to a reduced availability of high quality food in years with early spring, either due to food depletion resulting from high brood density or a mismatch between hatching date of goslings and the timing of the peak of plant quality. Our analysis suggests that climate warming should advance the reproductive phenology of geese, but that high spring temperatures and extreme values of the summer AO index may decrease their reproductive success up to fledging.  相似文献   
75.
Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.  相似文献   
76.
Electromyography (EMG), or the study of muscle activation patterns,has long been used to infer central nervous system (CNS) controlof the musculoskeletal system and the evolution of that control.As the activation of the muscles at the level of the peripheryis a reflection of the interaction of descending influencesand local reflex control, EMG is an important tool in integratedinvestigations of the evolution of coordination in complex,musculoskeletal systems. Yet, the use of EMG as a tool to understandthe evolution of motor control has its limitations. We herereview the potential limitations and opportunities of the useof EMG in studying the evolution of motor control in vertebratesand provide original previously unpublished data to illustratethis. The relative timing of activation of a set of musclescan be used to evaluate CNS coordination of the components ina musculoskeletal system. Studies of relative timing revealtask-dependent variability in the recruitment of different populationsof muscle fibers (i.e., different fiber types) within a singlemuscle, and left–right asymmetries in activation thatneed to be taken into account in comparative studies. The magnitudeof muscle recruitment is strongly influenced by the instantaneousdemands imposed on the system, and is likely determined by localreflex-control systems. Consequently, using EMG to make meaningfulinferences about evolutionary changes in musculoskeletal controlrequires comparisons across similar functional tasks. Moreover,our data show that inferences about the evolution of motor controlare limited in their explanatory power without proper insightsinto the kinematics and dynamics of a system.  相似文献   
77.
Environmental conditions likely affect physiology and behaviour of mice used for life sciences research on Earth or in Space. Here, we analysed the effects of cage confinement on the weightbearing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based and fully automated life support habitat device called “Mice in Space” (MIS). Compared with control housing (individually ventilated cages) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, aggressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure during spaceflight. Our results may be even more helpful in developing multidisciplinary protocols with adequate scenarios addressing molecular to systems levels using mice of various genetic phenotypes in many laboratories. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
78.
Rien Aerts 《Polar Biology》2009,32(2):207-214
Global warming will lead to increased nitrogen supply in tundra ecosystems. How increased N supply affected leaf production, leaf turnover and dead leaf N input into the soil of Empetrum nigrum and Andromeda polifolia (evergreens), Eriophorum vaginatum (graminoid) and Betula nana (deciduous) in a sub-arctic tundra in northern Sweden between 2003 and 2007 was experimentally investigated. There was considerable interspecific variation in the response of leaf production to N addition, varying from negative, no response to a positive response. Nitrogen addition effects on leaf turnover also showed considerable variation among species, varying from no effect to increased leaf turnover (up to 27% in Eriophorum). Nitrogen addition resulted in a four to fivefold increase in N content in the dead leaves of both evergreens and a 65% increase in Eriophorum. Surprisingly, there was no increase in Betula. The response of dead leaf P contents to N addition was rather species specific. There was no response in Empetrum, whereas there were significant increases in Andromeda (+214%) and Eriophorum (+32%), and a decrease of 47% in Betula. As an overall result of the changes in leaf production, leaf turnover and dead leaf N and P contents, nitrogen addition increased in all species except Betula the amount of N and, for Andromeda and Eriophorum the amount of P transferred to the soil due to leaf litter inputs. However, the way in which this was achieved differed substantially among species due to interspecific differences in the response of the component processes (leaf production, leaf turnover, dead leaf nutrient content).  相似文献   
79.
Temperate and boreal forests undergo drastic functional changes in the springtime, shifting within a few weeks from net carbon (C) sources to net C sinks. Most of these changes are mediated by temperature. The autumn 2006–winter 2007 record warm period was followed by an exceptionally warm spring in Europe, making spring 2007 a good candidate for advances in the onset of the photosynthetically active period. An analysis of a decade of eddy covariance data from six European forests stands, which encompass a wide range of functional types (broadleaf evergreen, broadleaf deciduous, needleleaf evergreen) and a wide latitudinal band (from 44° to 62°N), revealed exceptional fluxes during spring 2007. Gross primary productivity (GPP) of spring 2007 was the maximum recorded in the decade examined for all sites but a Mediterranean evergreen forest (with a +40 to +130 gC m?2 anomaly compared with the decadal mean over the January–May period). Total ecosystem respiration (TER) was also promoted during spring 2007, though less anomalous than GPP (with a +17 to +93 gC m?2 anomaly over 5 months), leading to higher net uptake than the long‐term mean at all sites (+12 to +79 gC m?2 anomaly over 5 months). A correlative analysis relating springtime C fluxes to simple phenological indices suggested spring C uptake and temperatures to be related. The CASTANEA process‐based model was used to disentangle the seasonality of climatic drivers (incoming radiation, air and soil temperatures) and biological drivers (canopy dynamics, thermal acclimation of photosynthesis to low temperatures) on spring C fluxes along the latitudinal gradient. A sensitivity analysis of model simulations evidenced the roles of (i) an exceptional early budburst combined with elevated air temperature in deciduous sites, and (ii) an early relief of winter thermal acclimation in coniferous sites for the promotion of 2007 spring assimilation.  相似文献   
80.
ABSTRACT In Quebec, Canada, harvest of bobcats (Lynx rufus) started to decline in 1985 and by 1991, harvest seasons were closed due to concerns of a perceived population decline. Since the closing of harvest season in 1991, the average temperature has increased, snow quantity has decreased, and important changes in agriculture and forest management have occurred. In light of changing conditions, the situation of Quebec bobcats needed reassessment. Thus, we analyzed harvest data to clarify the current status of bobcat populations in Quebec. From 1980 to 1991, bobcat harvest in Quebec was strongly correlated with bobcat harvest in Maine (USA), Nova Scotia (Canada), Ontario (Canada), and Vermont (USA). Extrapolations of harvest in Quebec relative to harvest in Maine, Ontario, Vermont, and Nova Scotia suggested an increase in number of bobcats after 1991. Mass of male and female bobcats before 1991 was less than mass of animals captured after 1991. Percentage of juveniles in the reported harvest before 1991 was higher than after 1991. However, percentage of males and litter sizes in the harvest did not differ before and after 1991. The geographic distribution of bobcats captured has gradually expanded after the closure of the harvest season. Our findings suggest that bobcat populations in Quebec have recovered from the 1985–1991 decline, and that the harvest season for this species could resume. This study also illustrates how managers can rely on data from neighboring jurisdiction to manage species when local harvest data is unavailable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号