首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   165篇
  国内免费   72篇
  2134篇
  2023年   19篇
  2022年   22篇
  2021年   41篇
  2020年   20篇
  2019年   43篇
  2018年   31篇
  2017年   41篇
  2016年   43篇
  2015年   99篇
  2014年   97篇
  2013年   106篇
  2012年   148篇
  2011年   143篇
  2010年   78篇
  2009年   75篇
  2008年   98篇
  2007年   87篇
  2006年   82篇
  2005年   67篇
  2004年   89篇
  2003年   76篇
  2002年   73篇
  2001年   69篇
  2000年   50篇
  1999年   43篇
  1998年   23篇
  1997年   18篇
  1996年   22篇
  1995年   11篇
  1994年   16篇
  1993年   14篇
  1992年   22篇
  1991年   14篇
  1990年   25篇
  1989年   19篇
  1988年   19篇
  1987年   10篇
  1986年   16篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1981年   10篇
  1979年   11篇
  1978年   8篇
  1977年   12篇
  1976年   12篇
  1975年   15篇
  1974年   8篇
  1972年   7篇
  1969年   8篇
排序方式: 共有2134条查询结果,搜索用时 0 毫秒
81.
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.  相似文献   
82.
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.  相似文献   
83.
The effect of protriptyline on Ca2+ physiology in human hepatoma is unclear. This study explored the effect of protriptyline on [Ca2+]i and cytotoxicity in HepG2 human hepatoma cells. Protriptyline (50–150 μM) evoked [Ca2+]i rises. The Ca2+ entry was inhibited by removal of Ca2+. Protriptyline‐induced Ca2+ entry was confirmed by Mn2+‐induced quench of fura‐2 fluorescence. Except nifedipine, econazole, SKF96365, GF109203X, and phorbol 12‐myristate 13 acetate did not inhibit Ca2+ entry. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5‐di‐tert‐butylhydroquinone (BHQ) inhibited 40% of protriptyline‐induced response. Treatment with protriptyline abolished BHQ‐induced response. Inhibition of phospholipase C (PLC) suppressed protriptyline‐evoked response by 70%. At 20–40 μM, protriptyline killed cells which was not reversed by the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid‐acetoxymethyl ester (BAPTA/AM). Together, in HepG2 cells, protriptyline induced [Ca2+]i rises that involved Ca2+ entry through nifedipine‐sensitive Ca2+ channels and PLC‐dependent Ca2+ release from endoplasmic reticulum. Protriptyline induced Ca2+‐independent cell death.  相似文献   
84.
Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC‐ and P‐MSC possess immunophenotypic and functional characteristics similar to BM‐MSC. However, their migration capacity, which is indispensable during tissue regeneration process, is unclear. Under defined conditions, the migration capacity of BM‐ and P‐MSC was found 5.9‐ and 3.2‐folds higher than that of UC‐MSC, respectively. By the use of 2‐DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Consistent with their migration capacity, the levels of migration enhancing proteins including cathepsin B, cathepsin D and prohibitin,were significantly lower in UC‐MSC when compared with those in BM‐ and P‐MSC. For the migration inhibiting proteins such as plasminogen activator inhibitor‐1 (PAI‐1) and manganese superoxide dismutase, higher expression was found in the UC‐MSC. We also showed that the overexpression of the PAI‐1 impaired the migration capacity of BM‐ and P‐MSC while silencing of PAI‐1 enhanced the migration capacity of UC‐MSC. Our study indicates that PAI‐1 and other migration‐related proteins are pivotal in governing the migration capacity of MSC.  相似文献   
85.
Differences in productivity for somatic embryos (SEs) in vitro among 18 potato cultivars and three wild Solanum species in an earlier study led to the hypothesis that regeneration of SEs may be under genetic control. To examine this possibility, three test crosses were initiated; Coastal Russet×AF 186-2; Costal Russet×Lenape; AF 186-2×Lenape. True potato seedlings from these crosses were germinated in vitro. Five stem internode explants from each seedling were excised and cultured on two successive media to promote the formation of SEs. Seedling explants Costal Russet×AF 186-2 cross produced more SE than the other two crosses, and explants from the AF 186-2×Lenape cross generally only produced <10 SEs per explant. SEs were produced on the stem-internode explants from the three crosses at different rates. Data for the number of explants producing SEs and numbers of SEs per explant were highly significant. Regeneration of SEs is probably under nuclear control and the inheritance for regeneration may be quite straightforward. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
86.
Fulminant liver failure (FLF) consists of a cascade of events beginning with a presumed uncontrolled systemic activation of the immune system. The etiology of FLF remains undefined. In this study, we demonstrate that CCR5 deficiency promotes the development of acute FLF in mice following Con A administration by preventing activated hepatic CD1d-restricted NKT cells (but not conventional T cells) from dying from activation-induced apoptosis. The resistance of CCR5-deficient NKT cells from activation-induced apoptosis following Con A administration is not due to a defective Fas-driven death pathway. Moreover, FLF in CCR5-deficient mice also correlated with hepatic CCR5-deficient NKT cells, producing more IL-4, but not IFN-gamma, relative to wild-type NKT cells. Furthermore, FLF in these mice was abolished by IL-4 mAb or NK1.1 mAb treatment. We propose that CCR5 deficiency may predispose individuals to the development of FLF by preventing hepatic NKT cell apoptosis and by regulating NKT cell function, establishing a novel role for CCR5 in the development of this catastrophic liver disease that is independent of leukocyte recruitment.  相似文献   
87.
Release of arachidonate from 2-arachidonyl diglyceride by human platelet microsomes was investigated. Diglycerides labeled with 14C-stearate at sn-1 and with 3H-arachidonate at sn-2 were used as a substrate for microsomal diglyceride lipase. Diglyceride was deacylated first at sn-1 as evidenced by the accumulation of 2-arachidonyl monoglyceride but not of 1-stearoyl monoglyceride. Subsequent release of arachidonate from monoglyceride required the action of a monoglyceride lipase. Studies on substrate specificity indicated that diglyceride lipase utilized 2-arachidonyl diglyceride as the best substrate.  相似文献   
88.
The following sequence has been derived for streptococcal proteinase. (See article). The sequence permits the assignment of the single cysteine residue essential for catalytic action at position 47 from the NH2 terminus of the protein. The tryptophan residue at the binding site of the enzyme is at position 214. A histidine residue at position 195 has been assigned as the catalytically important entity in the molecule. Streptococcal proteinase and papain, an enzyme with similar properties, are compared with respect to structure and function.  相似文献   
89.
Two independent relaxation kinetics methods were used to study samples of α-hemocyanin kindly furnished to us by members of the Biochemical Laboratory of the University of Groningen. A Durrum-Gibson stopped-flow apparatus was used to obtain concentration-jump data in the light-scattering mode. A recently developed pressurejump light-scattering apparatus was used to obtain completely independent data. The studies were made in 0.1 m acetate buffer at pH 5.7 containing 0.4 m NaCl, conditions under which equilibrium light-scattering studies had been reported by Engelborghs and Lontie (1973, J. Mol. Biol., 77, 577–587). In the companion paper (Kegeles, 1977, Arch. Biochem. Biophys., 180, 530–536), a model is proposed, consisting of a system containing a mixture of reactive and unreactive whole molecules, from which data are derived for the formation constant of whole molecules from halves and the fraction of material which is capable of undergoing reaction. The present study uses this estimate of this fraction of reactive material to permit the evaluation of overall rate constants and equilibrium constants. When the estimate of 65% of reactive material derived without making nonideality corrections is applied to the kinetics data, very satisfactory agreement is obtained between the equilibrium constant acquired from equilibrium data and the equilibrium constants derived from the kinetics data.  相似文献   
90.
Besides the open circuit voltage (VOC) deficit, fill factor (FF) is the second most significant parameter deficit for earth‐abundant kesterite solar cell technology. Here, various pathways for FF loss are discussed, with focus on the series resistance issue and its various contributing factors. Electrical and physical characterizations of the full range of bandgap (Eg = 1.0–1.5 eV) Cu2ZnSn(SxSe1?x)4 (CZTSSe) devices, as well as bare and exfoliated films with various S/(S + Se) ratios, are performed. High intensity Suns‐VOC measurement indicates a nonohmic junction developing in high bandgap CZTSSe. Grazing incidence X‐ray diffraction, Raman mapping, field emission scanning electron microscopy, and X‐ray photoelectron spectroscopy indicate the formation of Sn(S,Se)2, Mo(S,Se)2, and Zn(S,Se) at the high bandgap CZTSSe/Mo interface, contributing to the increased series resistance (RS) and nonohmic back contact characteristics. This study offers some clues as to why the record‐CZTSSe solar cells occur within a bandgap range centered around 1.15 eV and offers some direction for further optimization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号