首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   21篇
  2023年   1篇
  2022年   8篇
  2021年   14篇
  2020年   11篇
  2019年   10篇
  2018年   15篇
  2017年   6篇
  2016年   12篇
  2015年   8篇
  2014年   11篇
  2013年   13篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   9篇
  2008年   3篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有195条查询结果,搜索用时 109 毫秒
121.
Cholera is a serious epidemic and endemic disease caused by the Gram-negative bacterium Vibrio cholerae. SXT is an integrative conjugation element (ICE) that was isolated from a V. cholerae; it encodes resistance to the antibiotics chloramphenicol, streptomycin and sulfamethoxazole/trimethoprim. One hundred seven V. cholerae O1 strains were collected from cholera patients in Iran from 2005 to 2007 in order to study the presence of SXT constin and antibiotic resistance.The study examined 107 Vibrio cholerae strains isolated from cholera prevalent in some Iranian provinces. Bacterial isolation and identification were carried out according to standard bacteriological methods. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) to four antibiotics (chloramphenicol, streptomycin, sulfamethoxazole, and trimethoprim) were determined by broth microdilution method. PCR was employed to evaluate the presence of established antibiotic resistance genes and SXT constin using specific primer sets.The resistance of the clinical isolates to sulfamethoxazole, trimethoprime, chloramphenicol, and streptomycin was 97%, 99%, 99%, and 90%, respectively. The data obtained by PCR assay showed that the genes sulII, dfrA1, floR, strB, and sxt element were present in 95.3%, 95.3%, 81.3%, 95.3%, and 95.3% of the V. cholerae isolates.The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT constin. They were resistant to sulfamethoxazole, trimethoprime, chloramphenicol, and streptomycin. The detected antibiotic resistance genes included dfrA for trimethoprim and floR, strB, sulII and int, respectively, for chloramphenicol, streptomycin, sulfamethoxazole, as well as the SXT element.  相似文献   
122.
The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.  相似文献   
123.
Interactions between the protein kinase inhibitor UCN-01 and the PKC activator phorbol ester (PMA) have been examined in relation to differentiation and apoptosis in human myelomonocytic leukemia cells (U937). Coadministratation of 100 nM UCN-01 with a low concentration of PMA e.g., 2 nM, inhibited rather than promoted differentiation, reflected by reduced surface expression of the monocytic maturation marker CD11b and diminished cell adherence. Instead, administration of UCN-01 with PMA led to a marked increase in mitochondrial injury (e.g, cytochrome c release), activation of caspases-3 and -8, Bid cleavage, PARP degradation, and apoptosis, accompanied by a substantial reduction in viability and clonogenic survival. These phenomena were associated with multiple perturbations in cell cycle regulatory events, including abrogation of p21(CIP1) induction, p27(KIP1) cleavage, down-regulation of cyclin D1, dephosphorylation (activation) of p34cdc2, and degradation of underphosphorylated pRb. Potentiation of PMA-mediated apoptosis was partially mimicked by caffeine suggesting the involvement of Chk1 in the potentiation of apoptosis. Induction of cell death by UCN-01 and PMA was increased in cells stably expressing a p21(CIP1) mRNA antisense construct, suggesting that p21(CIP1) expression may protect cells from the lethal effects of this drug combination. Finally, ectopic expression of a Bcl-2 but not dominant-negative caspase-8 protected cells from UCN-01/PMA-mediated apoptosis, suggesting the lethal effects of this combination primarily involves the mitochondrial rather than the TNF-related extrinsic apoptotic pathway. Taken together, these findings suggest that UCN-01 disrupts a variety of cell cycle events in leukemic cells exposed to the maturation-inducing agent PMA, causing cells to engage an apoptotic rather than a differentiation-related program.  相似文献   
124.
Benzimidazoles compounds like omeprazole (OME) and thiabendazole (TBZ) mediate CYP1A1 induction differently from classical aryl hydrocarbon receptor (AhR) ligands, 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To clarify the involvement of an intracellular signal pathway in CYP1A1 induction by OME and TBZ, the TBZ, OME and 3-MC signal-transducing pathways were compared by using specific protein tyrosine kinase inhibitors in primary culture of rat hepatocytes. The effect of OME and TBZ (75-250 microM) on cytochrome P450 1A1 (CYP1A1) expression was therefore studied in primary cultures of rat hepatocytes after 24 h, 48 h and 72 h of exposure. Both compounds provoked a dose- and time-dependent increase in CYP1A1 (EROD activity, protein and mRNA levels), but OME was less effective at all the concentrations and times tested. The mechanism of benzimidazole-mediated induction of CYP1A1 was investigated by comparison with 3-MC, a prototypical AhR ligand. As expected, OME and TBZ were unable to displace [(3)H]-TCDD from its binding sites to the AhR in competitive binding studies. Moreover, classic tyrosine kinase inhibitor herbimycin A (HA) inhibited the two benzimidazoles-mediated CYP1A1 inductions, but only partially inhibited the 3-MC-mediated one. Another two tyrosine kinase inhibitors, Lavendustin A (LA) and genistein (GEN), had no effect on CYP1A1 induction by benzimidazoles and 3-MC. These results are consistent with the implication of a tyrosine kinase, most probably the Src tyrosine kinase, in the mechanism of CYP1A1 induction in rat hepatocytes.  相似文献   
125.
The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-inducing factor release) and apoptosis by imatinib mesylate exhibited a pronounced reduction in expression of Bcr/Abl, Bcl-x(L), and STAT5 but a striking increase in levels of activated Lyn. Whereas basal expression of Bcl-2 protein was very low in parental cells, imatinib-resistant cells displayed a marked increase in Bcl-2 mRNA and/or protein levels. Treatment of LAMA-R cells with the Src kinase inhibitor PP2 significantly reduced Lyn activation as well as Bcl-2 mRNA and protein levels. Transient or stable transfection of LAMA84 or K562 cells with a constitutively active Lyn (Y508F), but not with a kinase-dead mutant (K275D), significantly increased Bcl-2 protein expression and protected cells from lethality of imatinib mesylate. Ectopic expression of Bcl-2 protected K562 and LAMA84 cells from imatinib mesylate- and PP2-mediated lethality. Conversely, interference with Bcl-2 function by co-administration of the small molecule Bcl-2 inhibitor HA14-1 or down-regulation of Bcl-2 expression by small interfering RNA or antisense strategies significantly increased mitochondrial dysfunction and apoptosis induced by imatinib mesylate and the topoisomerase inhibitor VP-16 in LAMA-R cells. In marked contrast, these interventions had little effect in parental LAMA84 cells that display low basal levels of Bcl-2. Together, these findings indicate that activation of Lyn in leukemia cells displaying a Bcr/Abl-independent form of imatinib mesylate resistance plays a functional role in Bcl-2 up-regulation and provide a theoretical basis for the development of therapeutic strategies targeting Bcl-2 in such a setting.  相似文献   
126.
Understanding the mechanism(s) of action of the hepatitis B virus (HBV)-encoded protein HBx is fundamental to elucidating the underlying mechanisms of chronic liver disease and hepatocellular carcinoma caused by HBV infection. In our continued attempts to identify cellular targets of HBx, we have previously reported the identification of a novel cellular protein with the aid of a yeast two-hybrid assay. This cellular gene was identified as a third member of the family of human genes that encode the voltage-dependent anion channel (HVDAC3). In the present study, physical interaction between HBx and HVDAC3 was established by standard in vitro and in vivo methods. Confocal laser microscopy of transfected cells with respective expression vectors colocalized HVDAC3 and HBx to mitochondria. This novel, heretofore unreported subcellular distribution of HBx in mitochondria implies a functional role of HBx in functions associated with mitochondria. Using a stable cationic fluorophore dye, CMXRos, we show that HBx expression in cultured human hepatoma cells leads to alteration of mitochondrial transmembrane potential. Such functional roles of HBx in affecting mitochondrial physiology have implications for HBV-induced liver injury and the development of hepatocellular carcinoma.  相似文献   
127.
Interactions between the histone deacetylase inhibitor sodium butyrate (SB) and phorbol 12-myristate 13-acetate (PMA) were examined in human myeloid leukemia cells (U937 and HL-60). Exposure of U937 cells to 1 mM SB and 1 nM PMA (24 h) markedly induced caspase activation and apoptosis, events accompanied by impaired differentiation induction (e.g., reduced plastic adherence and diminished expression of CD11b) as well as reduced clonogenic survival. The PKC inhibitor GF109203X blocked SB-/PMA-mediated apoptosis. Comparable results were obtained in HL-60 cells. Apoptosis was associated with early procaspase 8 activation and Bid cleavage, accompanied by pronounced mitochondrial damage (e.g., loss of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release). Neutralization of endogenous TNFalpha by a human soluble TNF receptor substantially blocked SB-/PMA-induced cytochrome c release and apoptosis. Consistent with this, ectopic expression of a mutant dominant-negative caspase 8 or CrmA resulted in a significant decrease in SB-/PMA-induced apoptosis, whereas Bcl-2 overexpression did not. SB/PMA treatment also triggered a decline in the S and G(2)M populations, and dephosphorylation of p34(cdc2). These results indicate that SB interacts with low concentrations of PMA to induce apoptosis in human leukemia cells and that this process proceeds through a PKC-/TNFalpha-dependent pathway in which procaspase 8 and Bid activation play key roles.  相似文献   
128.
T M Rahmani 《Acta anatomica》1984,119(4):203-209
The ability of stage-4-9 chick presumptive lens ectoderm to undergo nervous tissue or lens differentiation was studied in vitro. The tissue was cultured alone or co-cultured with alcohol-killed primitive node or optic cup as inducer. Immunofluorescence was studied on paraffin-wax preparations, which were then studied histologically. An attempt was made to correlate immunological and histological differentiation. The presumptive lens ectoderm differentiated both nervous tissue and lens structures in all stages, regardless of the presence or absence of an inducer. The outcome, however, was improved when an inducer was included. The inducers were not qualitatively specific. The stage-4 ectoderm proved to be more apt than older stages to differentiate nervous tissue and form neural tube-like structures. In the former stage, lens differentiation occurred with less readiness. Older stages differentiated lens structures readily and also showed immunological signs of nervous tissue differentiation. No indication of histological differentiation, however, was apparent and no neural tube-like structures formed.  相似文献   
129.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   
130.
The effect of chronic administration of morphine and its withdrawal on the binding of 3H-[3-MeHis2]thyrotropin releasing hormone (3H-MeTRH) to membranes of the spinal cord of the rat was determined. Male Sprague-Dawley rats were implanted with either 6 placebo or 6 morphine pellets (each containing 75-mg morphine base) during a 7-day period. Two sets of animals were used. In one, the pellets were left intact at the time of sacrificing (tolerant-dependent) and in the other, the pellets were removed 16 hours prior to sacrificing (abstinent rats). In placebo-pellet-implanted rats, 3H-MeTRH bound to the spinal cord membranes at a single high affinity binding site with a Bmax of 21.3 +/- 1.6 fmol/mg protein, and an apparent dissociation constant Kd of 4.7 +/- 0.8 nM. In morphine tolerant-dependent or abstinent rats, the binding constants of 3H-MeTRH to spinal cord membranes were unaffected. Previous studies from this laboratory indicate that TRH can inhibit morphine tolerance-dependence and abstinence processes without modifying brain TRH receptors. Together with the present results, it appears that the inhibitory effect of TRH on morphine tolerance-dependence and abstinence is probably not mediated via central TRH receptors but may be due to its interaction with other neurotransmitter systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号