首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   85篇
  922篇
  2023年   5篇
  2022年   12篇
  2021年   22篇
  2020年   12篇
  2019年   14篇
  2018年   16篇
  2017年   7篇
  2016年   28篇
  2015年   45篇
  2014年   64篇
  2013年   54篇
  2012年   86篇
  2011年   78篇
  2010年   37篇
  2009年   38篇
  2008年   42篇
  2007年   48篇
  2006年   47篇
  2005年   37篇
  2004年   39篇
  2003年   32篇
  2002年   35篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   11篇
  1995年   13篇
  1994年   8篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   8篇
  1981年   1篇
  1980年   7篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有922条查询结果,搜索用时 0 毫秒
51.
Cytoskeleton and cell wall function in penetration resistance   总被引:1,自引:0,他引:1  
Plants successfully repel the vast majority of potential pathogens that arrive on their surface, with most microorganisms failing to breach the outer epidermal wall. Resistance to penetration at the epidermis is a key component of basal defence against disease and critically depends on fortification of the cell wall at the site of attempted penetration through the development of specialised cell wall appositions rich in antimicrobial compounds. Formation of cell wall appositions is achieved by rapid reorganisation of actin microfilaments, actin-dependent transport of secretory products to the infection site and local activation of callose synthesis. Plants are finely tuned to detect the presence of pathogens on their surface, perceiving both chemical and physical signals of pathogen origin. In the on-going evolution of interaction strategies, plants must continually monitor and out manoeuvre pathogen avoidance or suppression of plant defences in order to preserve the effectiveness of penetration resistance.  相似文献   
52.
The sexes of dioecious species may differ in a range of vegetative and reproductive traits as well as in physiological traits. In Siparuna grandiflora, a Neotropical dioecious shrub, we examined differences in leaf-level photosynthesis of different classes of leaf age and, using simulation models, explored whether differences in leaf-level carbon gain led to sex differences in whole-plant daily carbon gain. Male plants had higher photosynthetic capacity at the leaf level. As leaves of both sexes aged their photosynthetic capacity and specific leaf area declined as expected. Simulations of daily carbon gain using the architecturally explicit model Y-Plant and a non-architectural model incorporating a wide range of realistic light environments revealed that the difference in leaf-level photosynthetic capacity did not translate into greater crown-level carbon gain for males. Rather, differences in patterns of allocation to leaf area allow females to achieve higher crown-level carbon gain. The results demonstrate that sex differences at the leaf level do not necessarily predict patterns at the whole-plant level.  相似文献   
53.
Many biotrophic fungal and oomycete pathogens share a common infection process involving the formation of haustoria, which penetrate host cell walls and form a close association with plant membranes. Recent studies have identified a class of pathogenicity effector proteins from these pathogens that is transferred into host cells from haustoria during infection. This insight stemmed from the identification of avirulence (Avr) proteins from these pathogens that are recognized by intracellular host resistance (R) proteins. Oomycete effectors contain a conserved translocation motif that directs their uptake into host cells independently of the pathogen, and is shared with the human malaria pathogen. Genome sequence information indicates that oomycetes may express several hundred such host-translocated effectors. Elucidating the transport mechanism of fungal and oomycete effectors and their roles in disease offers new opportunities to understand how these pathogens are able to manipulate host cells to establish a parasitic relationship and to develop new disease-control measures.  相似文献   
54.
Nuclear deoxyribonucleic acid sequences from approximately 15,000 salmon louse expressed sequence tags (ESTs), the complete mitochondrial genome (16,148bp) of salmon louse, and 16S ribosomal ribonucleic acid (rRNA) and cytochrome oxidase subunit I (COI) genes from 68 salmon lice collected from Japan, Alaska, and western Canada support a Pacific lineage of Lepeophtheirus salmonis that is distinct from that occurring in the Atlantic Ocean. On average, nuclear genes are 3.2% different, the complete mitochondrial genome is 7.1% different, and 16S rRNA and COI genes are 4.2% and 6.1% different, respectively. Reduced genetic diversity within the Pacific form of L. salmonis is consistent with an introduction into the Pacific from the Atlantic Ocean. The level of divergence is consistent with the hypothesis that the Pacific form of L. salmonis coevolved with Pacific salmon (Onchorhynchus spp.) and the Atlantic form coevolved with Atlantic salmonids (Salmo spp.) independently for the last 2.5–11 million years. The level of genetic divergence coincides with the opportunity for migration of fish between the Atlantic and Pacific Ocean basins via the Arctic Ocean with the opening of the Bering Strait, approximately 5 million years ago. The genetic differences may help explain apparent differences in pathogenicity and environmental sensitivity documented for the Atlantic and Pacific forms of L. salmonis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
55.

Background  

Deer mice (Peromyscus maniculatus) and congeneric species are the most common North American mammals. They represent an emerging system for the genetic analyses of the physiological and behavioral bases of habitat adaptation. Phylogenetic evidence suggests a much more ancient divergence of Peromyscus from laboratory mice (Mus) and rats (Rattus) than that separating latter two. Nevertheless, early karyotypic analyses of the three groups suggest Peromyscus to be exhibit greater similarities with Rattus than with Mus.  相似文献   
56.
Active pathological bone destruction in humans often occurs in locations where oxygen tension (pO2) is likely to be low, for example, at the sites of tumours, inflammation, infections and fractures, or the poorly vascularized yellow fatty marrow of the elderly. We examined the effect of pO2 on formation of osteoclasts, the cells responsible for bone resorption, in 14‐day cultures of normal human peripheral blood mononuclear cells (hPBMCs) on ivory discs. Hypoxia (1–2% O2) caused threefold increases in the number of osteoclasts formed, compared with 20% O2. Hypoxia also caused a twofold increase in the number of nuclei per osteoclast, leading to stimulations of resorption pit formation of up to 10‐fold. Exposure to hypoxia led to stabilization of the hypoxia‐inducible factors, HIF1α and HIF2α, and upregulation of vascular endothelial growth factor and interleukin‐6 expression by hPBMCs. These findings help explain why extravasation of mononuclear precursors into relatively O2‐deficient bone microenvironments could result in osteoclast formation and suggest a new mechanism for the bone loss associated with the pathophysiological conditions where hypoxia commonly occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
57.
Bovine adipofibroblasts, 3T3-L1 cells, L-6 myogenic cells, and sheep satellite cells were allowed to proliferate for 48 h. Oil red-O (ORO) was dissolved in three different solvents isopropanol, propylene glycol and triethyl phosphate. At 48 h, the proliferative cultures were stained with the three stains. ORO stain prepared in both propylene glycol and triethyl phosphate resulted in bright red droplets appearing in all cultures, whereas ORO dissolved in isopropanol was not taken up by any of the cells. These data suggest that certain preparations of ORO may stain cells in non-adipogenic lineages as well as undifferentiated pre-adipocytes. Caution must be exercised when choosing solvents for ORO in differentiation studies using cells of the fat/adipose lineage.  相似文献   
58.
Rho family GTPases are GDP/GTP-regulated molecular switches that regulate signaling pathways controlling diverse cellular processes. Wrch-1 was identified as a Wnt-1 regulated Cdc42 homolog, upregulated by Wnt1 signaling in Wnt1-transformed mouse mammary cells, and was able to promote formation of filopodia and activate the PAK serine/threonine kinase. Wrch-1 shares significant sequence and functional similarity with the Cdc42 small GTPase. However, Wrch-1 possesses a unique N-terminal 46 amino acid sequence extension that contains putative Src homology 3 (SH3) domain-interacting motifs. We determined the contribution of the N terminus to Wrch-1 regulation and activity. We observed that Wrch-1 possesses properties that distinguish it from Cdc42 and other Rho family GTPases. Unlike Cdc42, Wrch-1 possesses an extremely rapid, intrinsic guanine nucleotide exchange activity. Although the N terminus did not influence GTPase or GDP/GTP cycling activity in vitro, N-terminal truncation of Wrch-1 enhanced its ability to interact with and activate PAK and to cause growth transformation. The N terminus associated with the Grb2 SH3 domain-containing adaptor protein, and this association increased the levels of active Wrch-1 in cells. We propose that Grb2 overcomes N-terminal negative regulation to promote Wrch-1 effector interaction. Thus, Wrch-1 exhibits an atypical model of regulation not seen in other Rho family GTPases.  相似文献   
59.
60.
Angiogenesis, the growth of new blood vessels, is regulated by a number of factors, including hypoxia and vascular endothelial growth factor (VEGF). Although the effects of hypoxia have been studied intensely, less attention has been given to other extracellular parameters such as pH. Thus, the present study investigates the consequences of acidic pH on VEGF binding and activity in endothelial cell cultures. We found that the binding of VEGF165 and VEGF121 to endothelial cells increased as the extracellular pH was decreased from 7.5 to 5.5. Binding of VEGF165 and VEGF121 to endothelial extracellular matrix was also increased at acidic pH. These effects were, in part, a reflection of increased heparin binding, because VEGF165 and VEGF121 showed increased retention on heparin-Sepharose at pH 5.5 compared with pH 7.5. Consistent with these findings, soluble heparin competed for VEGF binding to endothelial cells under acidic conditions. However, at neutral pH (7.5) low concentrations of heparin (0.1-1.0 microg/ml) potentiated VEGF binding. Extracellular pH also regulated VEGF activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2). VEGF165 and VEGF121 activation of Erk1/2 at pH 7.5 peaked after 5 min, whereas at pH 6.5 the peak was shifted to 10 min. At pH 5.5, neither VEGF isoform was able to activate Erk1/2, suggesting that the increased VEGF bound to the cells at low pH was sequestered in a stored state. Therefore, extracellular pH might play an important role in regulating VEGF interactions with cells and the extracellular matrix, which can modulate VEGF activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号