首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   85篇
  2023年   5篇
  2022年   6篇
  2021年   22篇
  2020年   12篇
  2019年   14篇
  2018年   16篇
  2017年   7篇
  2016年   28篇
  2015年   45篇
  2014年   64篇
  2013年   54篇
  2012年   86篇
  2011年   78篇
  2010年   37篇
  2009年   38篇
  2008年   42篇
  2007年   48篇
  2006年   47篇
  2005年   37篇
  2004年   39篇
  2003年   32篇
  2002年   35篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   9篇
  1997年   10篇
  1996年   11篇
  1995年   13篇
  1994年   8篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   8篇
  1981年   1篇
  1980年   7篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有916条查询结果,搜索用时 453 毫秒
41.
CD23 is a type II transmembrane glycoprotein synthesized by hematopoietic cells that has biological activity in both membrane-bound and freely soluble forms, acting via a number of receptors, including integrins. We demonstrate here that soluble CD23 (sCD23) sustains growth of human B cell precursors via an RGD-independent interaction with the alphavbeta5 integrin. The integrin recognizes a tripeptide motif in a small disulfide-bonded loop at the N terminus of the lectin head region of CD23, centered around Arg(172), Lys(173), and Cys(174) (RKC). This RKC motif is present in all forms of sCD23 with cytokine-like activity, and cytokine activity is independent of the lectin head, an "inverse RGD" motif, and the CD21 and IgE binding sites. RKC-containing peptides derived from this region of CD23 bind alphavbeta5 and are biologically active. The binding and activity of these peptides is unaffected by inclusion of a short peptide containing the classic RGD sequence recognized by integrins, and, in far-Western analyses, RKC-containing peptides bind to the beta subunit of the alphavbeta5 integrin. The interaction between alphavbeta5 and sCD23 indicates that integrins deliver to cells important signals initiated by soluble ligands without the requirement for interactions with RGD motifs in their common ligands. This mode of integrin signaling may not be restricted to alphavbeta5.  相似文献   
42.
Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.  相似文献   
43.
As scientists, we are at least as excited about the open questions—the things we do not know—as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such “rules” conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.

We asked 15 experts to address what they consider to be the most compelling open questions in plant cell biology and these are their questions.  相似文献   
44.
45.
Active pathological bone destruction in humans often occurs in locations where oxygen tension (pO2) is likely to be low, for example, at the sites of tumours, inflammation, infections and fractures, or the poorly vascularized yellow fatty marrow of the elderly. We examined the effect of pO2 on formation of osteoclasts, the cells responsible for bone resorption, in 14‐day cultures of normal human peripheral blood mononuclear cells (hPBMCs) on ivory discs. Hypoxia (1–2% O2) caused threefold increases in the number of osteoclasts formed, compared with 20% O2. Hypoxia also caused a twofold increase in the number of nuclei per osteoclast, leading to stimulations of resorption pit formation of up to 10‐fold. Exposure to hypoxia led to stabilization of the hypoxia‐inducible factors, HIF1α and HIF2α, and upregulation of vascular endothelial growth factor and interleukin‐6 expression by hPBMCs. These findings help explain why extravasation of mononuclear precursors into relatively O2‐deficient bone microenvironments could result in osteoclast formation and suggest a new mechanism for the bone loss associated with the pathophysiological conditions where hypoxia commonly occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
46.
Tobacco was transformed with three different alleles (L2, L6, and L10) of the flax rust resistance gene L, a member of the toll interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat (TIR-NBS-LRR) class of plant disease resistance genes. L6 transgenics had a stunted phenotype, expressed several defense response genes constitutively, and had increased resistance to the fungus Cercospora nicotianae and the oomycete Phytophthora parasitica pv. nicotianae. L2 and L10 transgenics, with one exception for L10, did not express these phenotypes, indicating that the activation of tobacco defense responses is L6 allele-specific. The phenotype of the exceptional L10 transgenic plant was associated with the presence of a truncated L10 gene resulting from an aberrant T-DNA integration. The truncated gene consisted of the promoter, the complete TIR region, and 39 codons of the NBS domain fused inframe to a tobacco retrotransposon-like sequence. A similar truncated L10 gene, constructed in vitro, was transiently expressed in tobacco leaves and gave rise to a strong localized necrotic reaction. Together, these results suggest that defense signaling properties of resistance genes can be expressed in an allele-specific and pathogen-independent manner when transferred between plant genera.  相似文献   
47.
Bovine adipofibroblasts, 3T3-L1 cells, L-6 myogenic cells, and sheep satellite cells were allowed to proliferate for 48 h. Oil red-O (ORO) was dissolved in three different solvents isopropanol, propylene glycol and triethyl phosphate. At 48 h, the proliferative cultures were stained with the three stains. ORO stain prepared in both propylene glycol and triethyl phosphate resulted in bright red droplets appearing in all cultures, whereas ORO dissolved in isopropanol was not taken up by any of the cells. These data suggest that certain preparations of ORO may stain cells in non-adipogenic lineages as well as undifferentiated pre-adipocytes. Caution must be exercised when choosing solvents for ORO in differentiation studies using cells of the fat/adipose lineage.  相似文献   
48.
3,7-Diarylsubstituted imidazopyridines were designed and developed as a new class of KDR kinase inhibitors. A variety of imidazopyridines were synthesized and potent inhibitors of KDR kinase activity were identified with good aqueous solubility.  相似文献   
49.
Rho family GTPases are GDP/GTP-regulated molecular switches that regulate signaling pathways controlling diverse cellular processes. Wrch-1 was identified as a Wnt-1 regulated Cdc42 homolog, upregulated by Wnt1 signaling in Wnt1-transformed mouse mammary cells, and was able to promote formation of filopodia and activate the PAK serine/threonine kinase. Wrch-1 shares significant sequence and functional similarity with the Cdc42 small GTPase. However, Wrch-1 possesses a unique N-terminal 46 amino acid sequence extension that contains putative Src homology 3 (SH3) domain-interacting motifs. We determined the contribution of the N terminus to Wrch-1 regulation and activity. We observed that Wrch-1 possesses properties that distinguish it from Cdc42 and other Rho family GTPases. Unlike Cdc42, Wrch-1 possesses an extremely rapid, intrinsic guanine nucleotide exchange activity. Although the N terminus did not influence GTPase or GDP/GTP cycling activity in vitro, N-terminal truncation of Wrch-1 enhanced its ability to interact with and activate PAK and to cause growth transformation. The N terminus associated with the Grb2 SH3 domain-containing adaptor protein, and this association increased the levels of active Wrch-1 in cells. We propose that Grb2 overcomes N-terminal negative regulation to promote Wrch-1 effector interaction. Thus, Wrch-1 exhibits an atypical model of regulation not seen in other Rho family GTPases.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号