首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   15篇
  2023年   1篇
  2022年   9篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   5篇
  2016年   5篇
  2015年   10篇
  2014年   12篇
  2013年   19篇
  2012年   17篇
  2011年   34篇
  2010年   11篇
  2009年   14篇
  2008年   20篇
  2007年   10篇
  2006年   13篇
  2005年   8篇
  2004年   8篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   4篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
191.
In this paper we present a methodology to form an anatomical atlas based on the analysis of dense deformation fields recovered by the Morphons non-rigid registration algorithm. The methodology is based on measuring the bending energy required to register the whole database to a reference, and the atlas is the one image in the database which yields the smallest bending energy when taken as reference. The suitability of our atlas is demonstrated in the context of head and neck radiotherapy through its application to a database with thirty-one computed tomography (CT) images of the head and neck region. In head and neck radiotherapy, CT is the most frequently used modality for the segmentation of organs at risk and clinical target volumes. One challenge brought by the use of CT images is the presence of important artifacts caused by dental implants. The presence of such artifacts hinders the use of intensity averages, thus severely limiting the application of most atlas building techniques described in the literature in this context. The results presented in the paper show that our bending energy model faithfully represents the shape variability of patients in the head and neck region; they also show its good performance in segmentation of volumes of interest in radiotherapy. Moreover, when compared to other atlases of similar performance in automatic segmentation, our atlas presents the desirable feature of not being blurred after intensity averaging.  相似文献   
192.
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe3+-mono-oxalate (Fe(C2O4)+). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe3+ molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5, it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe–oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2–4.5, iron from Fe–oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe3+ molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6–5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes.  相似文献   
193.

Background

Both insulin and thiazolidinediones (TZDs) are effective in the treatment of hyperglycaemia and amelioration of insulin resistance in type 2 diabetes but have side effects including weight gain and fluid retention. The use of TZDs has been further hampered by the risk of adverse cardiovascular events including heart failure. The present study evaluated the effect of pioglitazone or insulin glargine on cardiac function and size as well as on surrogate markers of fluid retention such as weight, haemoglobin and natriuretic peptides.

Methods

Thirty patients with inadequate glycaemic control on metformin and sulfonylurea were randomised to receive add-on therapy with insulin glargine or pioglitazone for 26 weeks. Echocardiographic data and blood samples were collected from the two groups before the start of the treatment and after 26 weeks. Left ventricular end-diastolic and left atrial end-systolic volumes were quantified, weight measured and blood samples analyzed.

Results

After 26 weeks of treatment, the changes in HbA1c, weight and haemoglobin were similar between the two groups. HDL increased significantly in the pioglitazone group. While there was an increase in natriuretic peptides in the pioglitazone group (NT-proBNP 11.4 ± 19.6 to 22.8 ± 44.0, p = 0.046), the difference between the treatment groups was not significant. Left ventricular end-diastolic volume increased by 11% and left atrial end-systolic volume by 17% in the pioglitazone group (Both, p < 0.05, between treatment groups). There was a borderline significant increase in ejection fraction in the pioglitazone group.

Conclusion

This randomised pilot-study showed that six-month treatment with pioglitazone induced significant increases in natriuretic peptides and alterations of cardiac size. These changes were not observed with insulin glargine, which also is known to induce fluid retention. Larger randomised trials are warranted to confirm these findings.  相似文献   
194.
AimsPrevious studies suggested that p38 MAPK activation during sustained myocardial ischaemia and reperfusion was harmful. We hypothesize that attenuation of p38MAPK activity via dephosphorylation by the dual-specificity phosphatase MKP-1 should be protective against ischaemia/reperfusion injury. Since the glucocorticoid, dexamethasone, induces the expression of MKP-1, the aim of this study was to determine whether upregulation of this phosphatase by dexamethasone protects the heart against ischaemia/reperfusion injury.Main methodsMale Wistar rats were treated with dexamethasone (3 mg/kg/day ip) for 10 days, before removal of the hearts for Western blot (ip Dex ? P) or perfusion in the working mode (ip Dex + P). Hearts were subjected to 20 min global or 35 min regional ischaemia (36.5 °C) and 30 or 120 min reperfusion. In a separate series, dexamethasone (1 µM) was added to the perfusate for 10 min (Pre + Dex) before or after (Rep + Dex) ischaemia.Key findingsDexamethasone, administered intraperitoneally or added directly to the perfusate, significantly improved post-ischaemic functional recovery and reduced infarct size compared to untreated controls (p < 0.05). These were associated with enhanced up-regulation of MKP-1 protein expression (arbitrary units (mean ± SD): Untreated: 1; ip Dex ? P: 2.59 ± 0.22; ip Dex + P: 1.51 ± 0.22; Pre + Dex: 4.11 ± 0.73, Rep + 15′Dex: 1.51 ± 0.14; untreated vs. all groups, p < 0.05) and attenuation of p38 MAPK activation (p < 0.05) in all dexamethasone-treated groups, except for Rep + 10′Dex. ERK and PKB/Akt activation were unchanged.SignificanceDexamethasone-induced cardioprotection was associated with upregulation of the phosphatase MKP-1 and inactivation of pro-apoptotic p38 MAPK.  相似文献   
195.
196.
197.
The 5-HT3 receptor is a member of the Cys-loop family of transmitter receptors. It can function as a homopentamer (5-HT3A-only subunits) or as a heteropentamer. The 5-HT3AB receptor is the best characterized heteropentamer. This receptor differs from a homopentamer in its kinetics, voltage dependence, and single-channel conductance, but its pharmacology is similar. To understand the contribution of the 5-HT3B subunit to the binding site, we created homology models of 5-HT3AB receptors and docked 5-HT and granisetron into AB, BA, and BB interfaces. To test whether ligands bind in any or all of these interfaces, we mutated amino acids that are important for agonist and antagonist binding in the 5-HT3A subunit to their corresponding residues in the 5-HT3B subunit and vice versa. Changes in [3H]granisetron binding affinity (Kd) and 5-HT EC50 were determined using receptors expressed in HEK-293 cells and Xenopus oocytes, respectively. For all A-to-B mutant receptors, except T181N, antagonist binding was altered or eliminated. Functional studies revealed that either the receptors were nonfunctional or the EC50 values were increased. In B-to-A mutant receptors there were no changes in Kd, although EC50 values and Hill slopes, except for N170T mutant receptors, were similar to those for 5-HT3A receptors. Thus, the experimental data do not support a contribution of the 5-HT3B subunit to the binding pocket, and we conclude that both 5-HT and granisetron bind to an AA binding site in the heteromeric 5-HT3AB receptor.  相似文献   
198.
Studies were carried out for the production of aroma compounds by Kluyveromyces marxianus grown on cassava bagasse in solid state fermentation using packed bed reactors, testing two different aeration rates. Respirometric analysis was used to follow the growth of the culture. Headspace analysis of the culture by gas chromatography showed the production of 11 compounds, out of which nine were identified. Ethyl acetate, ethanol and acetaldehyde were the major compounds produced. Lower aeration rate (0.06l h–1 g–1 of initial dry matter) increased total volatile (TV) production and the rate of production was also increased at this aeration rate. Using an aeration rate of 0.06l h–1 g–1 maximum TV concentrations were reached at 24 h and at 40 h with 0.12l h–1 g–1.  相似文献   
199.
The protozoan responsible for Chagas' disease, Trypanosoma cruzi , expresses on its surface an unusual trans -sialidase enzyme thought to play an important role in host–parasite interactions. Trans -sialidase is the product of a multigene family encoding both active and inactive proteins. We have demonstrated that despite lacking enzymatic activity due to a single mutation, Tyr342-His, inactive trans -sialidase displays sialic acid binding activity, with identical specificity to that of its active analogue. In this work we demonstrate that binding of a recombinant inactive trans -sialidase to molecules containing α2,3-linked sialic acid on endothelial cell surface triggers NF-κB activation, expression of adhesion molecules and upregulation of parasite entry into host cells. Furthermore, inactive recombinant trans -sialidase blocks endothelial cell apoptosis induced by growth factor deprivation. These results suggest that inactive members of the trans -sialidase family play a role in endothelial cell responses to T. cruzi infection.  相似文献   
200.
Homozygous staggerer mice (sg/sg) display decreased and dysfunctional retinoic acid receptor-related orphan receptor alpha (RORalpha) expression. We observed decreases in serum (and liver) triglycerides and total and high density lipoprotein serum cholesterol in sg/sg mice. Moreover, the sg/sg mice were characterized by reduced adiposity (associated with decreased fat pad mass and adipocyte size). Candidate-based expression profiling demonstrated that the dyslipidemia in sg/sg mice is associated with decreased hepatic expression of SREBP-1c, and the reverse cholesterol transporters, ABCA1 and ABCG1. This is consistent with the reduced serum lipids. The molecular mechanism did not involve aberrant expression of LXR and/or ChREBP. However, ChIP and transfection analyses revealed that RORalpha is recruited to and regulates the activity of the SREBP-1c promoter. Furthermore, the lean phenotype in sg/sg mice is also characterized by significantly increased expression of PGC-1alpha, PGC-1beta, and lipin1 mRNA in liver and white and brown adipose tissue from sg/sg mice. In addition, we observed a significant 4-fold increase in beta(2)-adrenergic receptor mRNA in brown adipose tissue. Finally, dysfunctional RORalpha expression protects against diet-induced obesity. Following a 10-week high fat diet, wild-type but not sg/sg mice exhibited a approximately 20% weight gain, increased hepatic triglycerides, and notable white and brown adipose tissue accumulation. In summary, these changes in gene expression (that modulate lipid homeostasis) in metabolic tissues are involved in decreased adiposity and resistance to diet-induced obesity in the sg/sg mice, despite hyperphagia. In conclusion, we suggest this orphan nuclear receptor is a key modulator of fat accumulation and that selective ROR modulators may have utility in the treatment of obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号